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Chapter 3. Elastic Waves and Quantum Mechanics 

 

“An ocean traveler has even more vividly the impression that 

the ocean is made of waves than that it is made of water.” 

   Arthur S. Eddington 

 

3.1. Introduction 

“… we must hang on to the basic ideas of logic at all costs.” 

 Paul Adrian Maurice Dirac [1989] 

The theoretical developments discussed in this book were accompanied by myriad 

experimental discoveries, most notably in the laboratories of J. J. Thomson [Figure 3.1] and his 

student (and later successor at Cambridge) Ernest Rutherford [Figure 3.2]. J.J. Thomson‟s study 

of cathode rays led to his discovery of the electron [1897]. Rutherford [1911, 1914] observed 

that beams of alpha particles occasionally scatter at large angles from a thin target. This 

observation led him to propose that atoms contain a positively charged nucleus of extremely 

small size (of order 1210  
cm radius) surrounded by a much larger volume (of order 810  cm 

radius) of negatively charged electrons. The Rutherford atomic model became the basis for all 

future theories of atomic structure.  

We have already mentioned the beginnings of quantum theory in the introduction to the 

previous chapter. Now we will discuss events which led to the development of a wave equation 

for the electron. This synopsis is based largely on Whittaker [1954]. 

According to Bohr‟s atomic model [Bohr 1913] the electron energy levels in hydrogen 

are: 

222

4

22

42 1

2

2

n
R

n

me

nh

me
W 




 (1) 

where R is called the Rydberg constant. Radiation is emitted when an electron drops from a 

higher energy level (larger n) to a lower energy level (smaller n), and the frequency of the 

radiation is proportional to the difference in energies. 

William Wilson [1915] and Arnold J. W. Sommerfeld [1915a, 1915b, 1916a] [Figure 3.3] 

recognized Bohr‟s quantization of angular momentum of circular orbits (yielding energy 

quantum number n) to be a special case of quantization of action: hdqp ii  , where qi is a 

coordinate variable and pi is the corresponding momentum. Sommerfeld explained much of the 

„fine structure‟ of hydrogen spectral lines by generalizing Bohr‟s circular orbits to ellipses, 
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including relativistic inertia corrections and a new azimuthal quantum number k. The relativistic 

correction to the energy levels of hydrogen-like atoms is: 
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The fine structure constant, 13712 ce , represents the ratio between the velocity of the first 

Bohr orbit and the speed of light [Whittaker p. 120].  

Karl Schwarzchild [1916] and Paus Sophus Epstein [1916] used action quantization to 

derive the spectral line shifts for hydrogen in a strong electric field (Stark effect). Sommerfeld 

[1916b] and Peter Debye [1916] explained the splitting of spectral lines in a strong magnetic 

field (Zeeman effect) by using three quantization conditions: energy (n), magnitude of orbital 

angular momentum ( nkl  1 ), and component of angular momentum parallel to the applied 

magnetic field (m). Note that lm  . Quantization of a single component of angular momentum, 

termed „space quantization‟, was verified when O. Stern and W. Gerlach [1921] split a beam of 

silver atoms into two discrete components simply by applying a nonuniform magnetic field.  

Principal spectral lines of alkali elements (e.g. Na) are doublets which could not be 

explained by the aforementioned quantum numbers. Various schemes were proposed to include 

an additional angular momentum quantum number which was generally supposed to be 

associated with the atomic core. Wolfgang Pauli disputed this identification of core angular 

momentum in part because it led to a Z
3
 dependence in the relativistic energy shifts. He instead 

attributed the quantum number j to the radiant electron which possessed a “classically non-

describable two-valuedness”. Pauli [1925] also observed that restriction of each set of quantum 

numbers n, k, j, and m to a single electron (the „exclusion principle‟) was consistent with the 

notion of electron shells (proposed by Edmund C. Stoner and J. D. Main Smith) which close 

when all of the quantum numbers for a given value of n are filled by electrons. 

Ralph Kronig realized that self-rotation of the electron with angular momentum of /2 

would explain the Z
4
-dependence of the doublet energy shifts, but since his calculation of the 

energy levels was off by a factor of two he did not publish his idea. Uhlenbeck and Goudsmidt 

[1925] did publish the idea of electron angular momentum of /2, but unsuccessfully attempted 

to withdraw the paper after realizing the factor of two discrepancy. At this time Llewellyn 

Hilleth Thomas [1926, 1927] resolved the factor of two discrepancy by publishing a paper which 

demonstrated that the (classical) relativistic precession of the electron magnetic moment in the 

internal atomic magnetic field, and hence the splitting of energy levels, had been computed 

incorrectly. Hence the electron‟s spin angular momentum of /2 was established. 

Werner Heisenberg [1925] [Figure 3.4] proposed that transitions between stationary states 

(e.g. m and n) could be represented by an array of elements (e.g. xmn) whose amplitude is related 

to the likelihood of the transition. Max Born [1925] and Pascual Jordan quickly developed this 

idea into a complete formulation of matrix mechanics in which commutation rules replaced 
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action integrals as the basis of quantization (e.g. i pqqp  where q is a coordinate and p is the 

conjugate momentum).  

Louis de Broglie [1924] proposed a novel explanation for Bohr‟s quantization rules. He 

proposed that matter has a wavelike character with energy proportional to frequency    and 

momentum proportional to wave vector kp  . The periodic condition for a wave of wavelength 

 propagating in a circular orbit of radius r: 

 nr 2  (3) 

implies quantization of angular momentum: 

nrp   (4) 

Erwin Schrödinger [1926] [Figure 3.5] subsequently published a differential wave equation 

based on de Broglie‟s matter waves. For a non-relativistic particle of mass m in a potential V(r,t), 

the energy is given by: 
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The corresponding differential equation for de Broglie waves is called the Schrödinger equation: 
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where the wave function   is a complex scalar. For a Coulomb potential (V = e
2
/r) this 

equation yields energy eigenvalues equal to Bohr‟s energy levels. Schrödinger initially 

interpreted the wave function to be related to electrical charge density, but Max Born‟s [1926] 

interpretation of   *  as a probability density  was soon widely accepted. A probability 

conservation equation can be obtained by multiplying  *
 and adding the complex conjugate: 
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The Schrödinger equation has the classical Hamiltonian form (see e.g. Goldstein [1980]): 

0i 



 


H

t
  (8) 

with i  representing Hamilton‟s principal function whose gradient is the momentum p. 

The differential equation corresponding to the relativistic energy-momentum relation 
42

0
222 cmcpE   is called the Klein-Gordon equation (or relativistic Schrödinger equation): 
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Interpretation of this equation proved more difficult than Schrödinger‟s non-relativistic equation. 

It does not have the classical Hamiltonian form with a first-order time derivative. The resulting 

conservation equation is obtained by multiplying  *
 and subtracting the complex conjugate: 
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The density in this equation (the first square brackets) can have either sign, making it 

problematic as an expression for probability density. Nonetheless the Klein-Gordon equation 

eventually became accepted as a description of particles with zero spin.  

Schrödinger subsequently demonstrated that Heisenberg‟s commutation rule i pqqp  

follows immediately from the definition of conjugate momenta as derivatives: 
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Pauli [1927] [Figure 3.6] multiplied Schrodinger‟s wave function by a two-component factor 

(termed a spinor) to model the two-valued space quantization due to electron spin. Multiplicative 

operators on Pauli spinors are linear combinations of independent 22 matrices which by 

convention are: 
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The last three of these matrices form a vector (i.e. transform as a vector under rotations) and are 

called the Pauli matrices. 

Paul Dirac [1928] [Figure 3.7] finally derived a valid relativistic wave equation by extending 

the wave function to four components and using matrix coefficients. The Dirac wave function 

has four complex components which can be written as: 

 T4321

4

3

2

1











 





















  (13) 

Such a wave function is called a Dirac spinor or bispinor. A Dirac spinor can be decomposed 

into left- and right-handed Pauli spinors which each have two complex components. Dirac‟s 

equation describing an electron in an electromagnetic potential is: 
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where  and  are the matrices: 
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Dirac also demonstrated that quantum mechanical equations could describe multiple particles 

by introducing a new wave function whose integrated square magnitude is taken to be the 

number of particles. This procedure is called “second quantization” (see e.g. [Tomonaga 1974]). 

Dirac developed this method for bosons by assuming the scalar amplitudes (ak) of various states 

(k) to be operators which satisfy the commutation relation kllklk aaaa  †† . The product kkaa†  

then has non-negative integer eigenvalues and represents the number of particles in each state. 

Jordan and Eugene Wigner [1928]  adapted this idea to fermions by using an anti-commutation 

relation kllklk aaaa  †† . In this case the product kkaa†  has eigenvalues of zero and one, 

consistent with Pauli‟s exclusion principle. 

Dirac‟s equation remains the foundation for describing matter waves. The Standard Model of 

particle physics “asserts that the material in the universe is made up of elementary fermions 

interacting through fields, of which they are the sources. The particles associated with the 

interaction fields are bosons.” [Cottingham and Greenwood 1998]. The wave functions are 

regarded as dimensionless quantities whose magnitude at any point represents a probability 

density for the presence of one or more particles. Some efforts were made to formulate a 

classical interpretation of the wave function (notably by de Broglie [1928] and David Bohm 

[1952], see e.g. Goldstein [2002]) but none was successful in the 20
th

 century. 

The mathematical and geometrical properties of spinors were first studied by the 

mathematician Élie Cartan in 1913 (see e.g. Hladik [1999] for a mathematical analysis of 

spinors). The algebra of spinors is closely related to that of quaternions, which were invented by 

Sir William R. Hamilton around 1843 as a generalization of complex numbers to higher 

dimension. Quaternions consist of four real components. They can in fact be written in matrix 

form with basis vectors I, x, y, and z. 
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Spinors have historically been regarded by mathematicians as operators (linear 

representations of rotation groups) and by physicists as abstract quantities with no classical 

interpretation. However, David Hestenes [1967] developed a space-time algebra which provides 

a geometrical interpretation of the Dirac equation. The wave function describes a generalized 

Lorentz rotation (spatial rotation and velocity boost) in addition to an amplitude and one 

additional parameter which appears to transform between matter and anti-matter. 

There have been successful attempts to reformulate the Dirac theory in terms of relations 

between local physical observables [Takabayashi 1957,  Hestenes 1973]. The Dirac equation 

uniquely determines the evolution of local dynamical quantities such as angular momentum 

density, linear momentum density, and energy density. In other words the Dirac equation is 

deterministic with respect to dynamical quantities.   

In this chapter we will derive a Dirac equation to describe rotational waves in an elastic solid. 

We will regard „particles‟ as soliton solutions. We will then derive numerous properties of 

elementary particles from this model.  

3.2. Torsion Waves 

...there are circumstances in which mathematics will produce results which no one has really 

been able to understand in any direct fashion. An example is the Dirac equation, which appears 

in a very simple and beautiful form, but whose consequences are hard to understand. 

 Richard P. Feynman, Robert B. Leighton, and Matthew Sands [1963a] 

 

Quantum theory developed from an initial classical picture of matter as particles. Yet we 

have seen that special relativity is a natural consequence of the wave nature of matter. Therefore 

the classical theory which corresponds to quantum mechanics must be a wave theory. One 

historical dilemma of quantum wave theory is the lack of an obvious physical interpretation of 

the wave amplitudes. Max Born suggested that the wave intensity be interpreted as a probability 

density, but he emphasized that "...the probability itself is propagated in accordance with the law 

of causality" [Born 1926]. While there is no doubt that the quantum wave functions can predict 

the likelihood of experimental results, their evolution indicates causal rather than stochastic 

interactions. 

Actually, the dynamical interpretation of the wave functions can be resolved by simple 

dimensional analysis. In terms of Dirac spinors, the z-component of spin angular momentum 

density sz is:  
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where  is the 4-component complex wave function with 
2

4

2

3

2

2

2

1

2
   and 

z is the z-component spin angular momentum matrix: 
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The leading factor in Eq. 16 is simply a constant which establishes units.  

Construction of a classical wave theory of matter must therefore begin with waves 

carrying angular momentum. Classically, angular momentum is associated with rotations of 

inertial bodies. Waves of angular momentum require not only inertia but also torque which 

resists rotations. Generation of torque in response to local rotations implies elasticity. Therefore 

the classical model of matter waves consists of rotations in an elastic solid (torsion or shear 

waves). We already know that the elastic solid was the basis for classical wave theories of light, 

so we can proceed with some confidence. 

First consider torsion in one dimension, such as on a torsion wave machine or a stretched-

out rubber band (Figure 3.8). A torsion wave machine has at least one intriguing parallel with 

particle physics. If one rotates a single rod near the center of the wire, a right-handed twist 

propagates in one direction and a left-handed twist propagates in the other direction, analogous 

to the production of particles and anti-particles. In every known physical process, anti-matter 

behaves like a mirror image of matter. Another interesting property of 1-D rotations is that there 

is a natural distinction between rotations of odd and even multiples of , analogous to the 

distinction between odd (fermions) and even (bosons) multiples of the unit angular momentum 

2 . The notion that torsion should be associated with matter is in fact widely accepted [Kleinert 

1989].Therefore there is reason to believe that a mathematical analysis of torsion waves might 

provide some clues to the interpretation of quantum mechanics. This analogy was first explored 

by Close [2002]. 
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Figure 3.8:  Rotation of a single bar on a torsion wave machine results in mirror-symmetric 

waves propagating in opposite directions. This is a one-dimensional analogue of production of 

particles and anti-particles. Matter and anti-matter are also typically produced in mirror-

symmetric pairs. 

If the moment of inertia per unit length is I, and the torsion spring constant of the wire (or 

rubber band ) is K, then the wave equation is given by: 
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where z,t is the orientation at axial position z and time t. The wave speed is given by 

IK=c .  

As with displacement waves, a unique frequency and wavelength cannot be defined for 

torsion waves unless many cycles are produced in succession. If one end of the wave machine is 

rotated at a constant rate , the torsion waves propagate along the machine with uniform 

wavelength =c/. Each rod along the machine rotates with the constant driving frequency . 

The angular momentum per unit length  is therefore zIcIckI  . The angular 

momentum is therefore proportional to the spatial derivative of the angle. The angular 

momentum of a twist from 0 to 0  can be obtained by integrating over angle: 
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Thus we see that the total angular momentum of a twist is proportional to the rotation angle and 

independent of frequency.  

A twist propagating with constant wavelength has no torque, so the kinetic and potential 

energies remain constant as the wave propagates. The kinetic energy per unit length is I
2
/2 and 

the potential energy per unit length is   2//2/
2

1 2222
 IKzK .  Integration from 0 to 

0  yields for the total energy: 
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The wave energy is equal to the wave angular momentum times the angular frequency. This is 

analogous to the energy quantum of . At this point we make the identifications: 

0
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so that the wave equation is simply: 
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Incidentally, although we have been describing torsion waves along a thin wire, the equation is 

valid for torsion waves in a thick cylindrical rod (see e.g. Feynman et al. 1963b).  

 Now we will take a look at the classical wave equation to see if it can be applied to the 

study of matter. We will start with one-dimensional waves as above, then generalize to three 

dimensional scalar and vector waves. 

3.3. One-Dimensional Scalar Waves 

"I have deep faith that the principle of the universe will be beautiful and simple." 

   Albert Einstein 

Consider a scalar quantity (a) which satisfies a wave equation with wave speed (c) in one spatial 

dimension (z): 

aca zt
222   (23) 

This equation can be factored: 

   0 acc ztzt  (24) 

The general solution is a superposition of forward (aF) and backward (aB) propagating waves: 

     ctzactzatza  BF,  (25) 

This form of the solution to the one-dimensional wave equation can be found in any elementary 

textbook on waves. We can write the equations for forward and backward waves in matrix form: 
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The spatial derivatives are related to the temporal derivatives: 

 
 

 
 

 
 



















































ctza

ctza

ctza

ctza

ctza

ctza
c ttz

B

F

B

F

B

F

10

01
 (27) 

Let aa t  and aa z . We now define a wave function in terms of the time derivatives: 

 
 















ctza

ctza

B

F




 (28) 

The wave equation for the forward and backward waves is now: 

 
 

 
 

0
10

01

B

F
















































ctza

ctza
c

ctza

ctza
c

B

F
ztzt 


 (29) 

We have now reduced the second-order wave equation to a first-order matrix equation.  

3.3.1. Spinors and Bispinors 

If we regard the z-axis as one of three orthogonal axes, then the two independent components Fa  

and Ba  differ by a 180 degree rotation. This is the definitive property of independent states in 

spin one-half systems. Unfortunately, this property is de-emphasized (or even unrecognized) in 

the physics literature in favor of the more exotic property that complex spinors change sign upon 

360 degree rotation. This latter property does not apply to physical observables which are 

computed from bilinear products of spinors. However, the separation of independent states by 

180 degrees does apply to wave velocity, implying that solutions of the wave equation generally 

form spin one-half systems. Note that unlike positive and negative scalars or vector components 

(which can also be expressed as bilinear products of spinors), waves with positive and negative 

velocity are not related by a multiplicative factor of minus one. The forward and backward 

waves are independent states. The mathematical basis of this property is that wave velocity is a 

property of the functional arguments and is not simply an amplitude. 

 

 

 

Figure: Waves propagating in opposite directions along an axis comprise independent states 

separated by a 180 degree rotation. This is the basis of half-integer spin. 

 

aF aB 

180º 
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The relationship between waves and spinors can be made explicit as in Close (2002) by further 

decomposition into positive-definite components (  BFBF ,,, aaaa  ) or (   BFBF ,,, aaaa ) 

representing positive (+) or negative () contributions to the wave derivatives: 

          ctzactzactzactzatza   BBFF,   (30) 

and 

          
       ctzactzactzactza

ctzactzactzactzactzac









BBFF

BBFF,


 (31) 

From here on the functional arguments will not be written explicitly. Note that the positive-

definite components may have discontinuous derivatives where the original signed quantities 

pass continuously through zero. For example, to make the time derivatives continuous requires 

matching conditions for a : 

0F0F

0F0F

FFFF

FFFF













aazaaz

aataat

aa

aa








  (32) 

Similar relations hold for the backward wave components. Such discontinuities do not affect the 

validity of the first order equations. However, higher derivatives may be undefined at some 

points. 

Since each component has a unique sign, we can express a and a  in spinorial form with the 

one-dimensional wave function v (the subscript „v‟ refers to the velocity axis): 

vv

21

21

21

21

21

21

21

21

1000

0100

0010

0001

 T

F

B

B

F

T

F

B

B

F

a

a

a

a

a

a

a

a

a 



































































































   

vv

21

21

21

21

21

21

21

21

1000

0100

0010

0001

 T

F

B

B

F

T

F

B

B

F

a

a

a

a

a

a

a

a

ac 



































































































 (33) 

where the superscript T indicates transposition of the column matrix and the matrix  tabulates 

the forward and backward velocities (v): 
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v

21

21

21

21

v

1000

0100

0010

0001

 c

a

a

a

a

cv

F

B

B

F
































































 (34) 

This wave function is a one-dimensional bispinor. In one dimension the components of the 

bispinor may be taken to be real and positive-definite. Extension to three dimensions requires 

complex components.  

Changing the order of terms in the wave function is called a change of „representation‟. A few 

important points are: 

1.  The components of the column matrix wave function are real and positive-definite.  

2.  Only one forward component and one backward component can be non-zero at any given 

time and place (for one-dimensional waves). 

3.  The spatio-temporal variation of each component must be consistent with its location in the 

column matrix.  

Since some of the components must be zero, let F and B be either zero or one. Then the wave 

function is: 

    TF
21

FB
21

B
21

BF
21

Fv 11   aaaa B   (35) 

Using Lorentz boosts, the wave function can be written as: 

       2112exp
T

FF
21

0v   BBa  (36) 

This form has two independent continuous parameters and two binary parameters. 

The equation of evolution of the wave components is: 

0vv   zt c  (37) 

This is the one-dimensional Dirac equation. This equation can be interpreted as a convective 

derivative with two opposite velocities represented by the matrix v=c.  

 The relation between one dimensional bispinor equations and scalar wave equations is 

summarized in Table 1. 
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Table 1. Corresponding Bispinor and Scalar Wave Equations in One Dimension 

Bispinor Equation Scalar Equation 

    0v
T
vv

T
v   zt c  0222  aca zt  

    0v
T
vv

T
v   zt c  022  BzzFzzBttFtt acacaa  

    0v
T
vv

T
v   zt c      0 acac tzzt  

    0v
T
vv

T
v   zt c  0 BtzFtzBztFzt acacacac  

3.3.2. Wave Velocity 

The mean velocity (v) of the wave is proportional to the ratio between the difference and sum of 

the forward and backward components [Close 2002]: 

vv

vv




T

T

BF

BF
c

aa

aa
cv 









 (38) 

Since Fa  and Ba  are positive-definite, we can define them by the relation: 

 

 







exp

exp

0

0

aa

aa

B

F




 (39) 

so that our definition of velocity is: 

   
   





tanh

expexp

expexp

00

00 c
aa

aa
cv 









 (40) 

If we start from a zero-velocity state with 0BF aaa   , then we can change the velocity using 

the „Lorentz boost‟ operator (   vv 2exp   ): 

     

     

   
   









tanh

expexp

expexp

2exp2exp

2exp2exp

vv

vv cc
c

v
T

T





  (41) 

Note that successive boosts preserve the form of the operator: 

      2exp2exp2exp 2112    (42) 
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This property enables us to recover the relativistic equation for addition of parallel velocities: 

 
2

21

21

21

21
21

22

11

1tanhtanh1

tanhtanh
tanh

tanh

tanh

cvv

vv
ccv

cv

cv
























 (43) 

This result is another example of how the laws of special relativity apply to classical waves in 

ordinary Galilean space-time, as discussed in Chapter 2.  

Using Lorentz boosts, the wave function can be written as: 

       2112exp FF

21

0v

T

BBa   
 (44) 

This form has two independent continuous parameters and two binary parameters. 

3.4. Three Dimensional Scalar Waves 

"... in quantum phenomena one obtains quantum numbers, which are rarely found in mechanics 

but occur very frequently in wave phenomena and in all problems dealing with wave motion." 

 Louis de Broglie [1963] 

3.4.1. Rotation of Gradient and Velocity 

The spatial derivative z  generalizes in three dimensions to a arbitrary direction v , where the 

index (v) represents an arbitrary direction. Wave velocity is defined to be parallel to the gradient. 

Since the matrix  is associated with a particular axis, it must be one component of a vector. 

We can let the matrix 3   and define the gradient matrix components as: 










































































1000

0100

0010

0001

,

00i
~

0

000i
~

i
~

000

0i
~

00

,

0010

0001

1000

0100

321   (45) 

The symbol ( i
~

) represents a unit pseudoscalar imaginary which is odd (changes sign) with 

respect to spatial inversion. This property is necessary because velocity is a polar vector and: 

321i
~

  (46) 

We must now allow the wave function to have complex components. These matrices have 

commutation relations equivalent to the Pauli matrices: 
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ijijji  2  ;  kijkijji  i
~

2  (47) 

An elegant way to write these commutation relations is: 

jijiji   i
~

 (48) 

where: 

 

 ijjiji

ijjiji









2

i
~

2

1

 (49) 

Hence we can regard these matrices as basis vectors whose commutation relations express their 

relative orientation. This idea is the basis for the mathematical field of geometric algebra. Notice 

that the unit imaginary now has a geometrical interpretation as the product of three orthogonal 

unit vectors: 

    i
~

i
~

i
~

32132321321  
 (50) 

 

The rotation operators for this space have the form: 

        iijjiijiijiiij
R  sin

2

i
~

cos2i
~

exp2i
~

exp   (51) 

which can be written in vector form: 

        iR   sincos2i
~

exp2i
~

exp ββββζσ   (52) 

To include rotations, the one-dimensional derivative vvvv  Tac   must be modified 

to include orientation. This orientation is computed relative to the x3-axis. Using the definitions: 

    
 

 2i
~

exp

2i
~

exp

2i
~

exp2i
~

exp

v
†

v

3v

ζβ

ζβ

ζβζβ







T





 (53) 

The wave function now has complex components. The rotation operator 

    vv 2i
~

exp  ζβζ R  applied to the one-dimensional wave function inverts the rotation of 
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the basis vectors so that the derivative can be evaluated using the one-dimensional real-valued 

matrix 3 and wave function v. 

The spatial derivative is: 

 v

†

v3vv  Tac
 (54) 

Since the beta matrices are mutually orthogonal, the components of  β
†  perpendicular to xv 

must be zero. Therefore the three dimensional gradient is: 

 β†v3vv
ˆ  Teac

 (55) 

 

3.4.2. Successive Rotations 

 Successive rotations can be performed using either fixed axes or embedded axes. The 

result of successive rotations about fixed axes depends on the order in which the rotations are 

taken. For example, successive rotations of /2 about the x1- and x2-axes move e3 to either – e2 or 

+ e1, depending on the order. Hence: 

        
         112321

221312

24i
~

exp4i
~

exp4i
~

exp4i
~

exp

4i
~

exp24i
~

exp4i
~

exp4i
~

exp








 (56) 

Here the expression inside the square brackets is evaluated first, followed by applying the 

rotation operator outside the square brackets. If we interpret these rotation operators as acting on 

spinors then the order appears to be backward. The expression:     4i
~

exp24i
~

exp 21  

represents spinor rotation of –/2 about the x1-axis followed by rotation about the x2-axis.  

3.4.2.1. Euler Angles 

We can put the operations back in order if we consider the second rotation operator to 

have been rotated along with the wave function by the first one: 

             2i
~

exp2i
~

exp2i
~

exp 1211
1

212 ΘβΘβΘβΘΘΘΘ  RRRR  (57) 

Two successive rotations yields: 

                2i
~

exp2i
~

exp 2111
1

2112 ΘβΘβΘΘΘΘΘΘ   RRRRRR  (58) 

Axes which are rotated along with the spinors are called embedded axes. Rotation angles which 

refer to embedded axes are called Euler angles. We use primes to denote rotations about 

embedded axes.  
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The Euler rotation operator R΄(2) can be interpreted as follows: First, rotate the spinor back to 

its original orientation. Next, rotate the spinor about the fixed axis corresponding to 2. Finally, 

rotate again about the embedded axis corresponding to 1 (the original axis now rotated by 2). 

The equation states that rotation by 1=΄1 followed by rotation about the fixed axis 2 is 

equivalent to rotation first by 2 followed by rotation by ΄1 about the embedded 1Θ̂  axis. In the 

above example, rotation by /2 about x followed by  /2 about z (or y΄) is equivalent to rotation 

by  /2 about z followed by  /2 about y (or x΄). 

The angular derivative of the wave function is: 

         







 2i

~
exp

2
2i

~
expi

~

2
2i

~
expi

~
2i

~
exp vv φβ

β
φβ

β
φβφβφφ  (59) 

 It is customary in quantum mechanics to define the angular derivative to be: 


2

i
~ β

φ    (60) 

This relation is only valid if the angle ΄ is measured with respect to the embedded axes. 

Accumulated rotations can be computed from successive rotations about embedded axes. 

Given a rotation rate w΄(t) with respect to embedded axes, the accumulated rotation operator is: 

        2i
~

exp2i
~

exp wβΘβΘ  dttRtR  (61) 

3.4.2.2. Examples 

Let us verify this expression with explicit examples. First, we compute the general 

expression for rotation about two successive embedded axes: Rotate by angle ΄a about an axis 

x΄a followed by  ΄b about  x΄b. The rotation operator is: 

        








 


















 










 







2
cos

2
sin

2
sin

2
cosi

~

2
sin

2
sin

2
cos

2
cos

2
sini

~

2
cos

2
sini

~

2
cos

2i
~

exp2i
~

exp

ab
b

ab
a

ab
ab

ab

a
a

ab
b

b

aabbtRtR




















Θ

 (62) 

Recall that bababa   i
~

. We consider two cases. First, if ΄a and ΄b are parallel 

then: 
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  








 







 









 











2
sini

2
cos

2
cos

2
sin

2
sin

2
cosi

2
sin

2
sin

2
cos

2
cos

ab
a

ab

abab
a

ababtR










Θ

 (63) 

which is obviously correct since parallel angles are additive. Next consider two perpendicular 

axes with cab  i
~

 : 

   






 











2
cos

2
sin

2
sin

2
cosi

~

2
sin

2
sini

~

2
cos

2
cos ab

b
ab

a
ab

c
abtR











Θ  (64) 

For the special case where both angles are  /2 this yields: 

  

   3sin
3

i
~

3cos
2

i
~

2

1

4
cos

4
sin

4
sin

4
cosi

~

4
sini

~

4
cos 22


















cbacba

bactR















Θ

 (65) 

This corresponds to a rotation operator for 2/3 radians about the axis   3ˆˆˆ cba xxx  . The 

validity of this result can be verified by picturing an equilateral triangle with corners on each axis 

equidistant from the origin. Clearly rotation by 2/3 about the center of the triangle merely 

permutes the positions of the axes, which is of course what happens when rotating by  /2 around 

successive orthogonal axes. Note also that the symmetry of the final result implies that: 

           4i
~

exp4i
~

exp4i
~

exp4i
~

exp4i
~

exp4i
~

exp  zxyzxy   (66) 

(x followed by y΄, y followed by z΄, z followed by x΄) which is consistent with our explanation of 

the secondary rotation operator above.  

3.4.3. Wave Function 

In three dimensions the gradient can be defined as a one-dimensional derivative rotated by angle 

 to a new axis v̂ . Let: 

   
  v

3v

2i
~

exp

2i
~

exp2i
~

exp





ζβ

ζβζβ




 (67) 

Rotation by angle  is denoted ζR  and defined relative to a default orientation along the x3 axis. 

The three-dimensional gradient is: 
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 βvxζ

†

v3v

3

3
ˆˆ cc

x

a
Ra T 












  (68) 

Writing a column matrix as the transpose of a row matrix, the rotated wave function  is: 

         2112exp2i
~

exp FF3
21

0
T

BBa   ζβ
 (69) 

However, in three dimensions the constant column matrix which represents v3=0 states may have 

nonzero velocity perpendicular to x3. This is indeed the case for   201010
T

  and 

  210100
T

 . The remaining states with zero velocity are obtained by rotation of 

velocity from: 

   210010
T

  (70) 

This state has zero time derivative but nonzero gradient. When Lorentz boosts are applied both 

the time derivative and velocity can be non-zero. The final form of the wave function is thus: 

    03
21

0 2exp2i
~

exp  ζβ  a
 (71) 

This is the general form of the scalar wave function. The constant matrix is multiplied by factors 

representing an amplitude, a 1-D velocity boost, and a general rotation in velocity space (two 

angles to determine velocity direction plus rotation about the velocity axis). Clearly four 

parameters are needed to determine at  and a . The significance of rotation about the velocity 

axis will be discussed below.  

3.4.4. First-Order Wave Equation 

The time derivative of (71) yields the first-order equation: 

    vv 2i
~

exp
2

i
~

2i
~

exp  ttt  ζβ
β

ζζβ  (72) 

Here we can see the effect of rotation about the velocity axis. Rotation of the left-hand side 

involves only direct rotation of the wave function, but rotation of the right-hand side also 

involves rotation of the angular frequency ζt . Rotation about the velocity (or gradient) axis can 

change the direction of this angular frequency. This is the significance of the fifth parameter in 

the factorization above. 

Inverting the rotation factor yields the one-dimensional wave function, which satisfies the one-

dimensional wave equation: 

     02i
~

expˆ3   ζβvct  (73) 
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Derivatives of the exponential factors are: 

     

     ζβζβζβ

ζβζβζβ





2i
~

exp
2

i
~

2iexp

2i
~

exp
2

i
~

2iexp tt

 (74) 

Substituting      βζβvζβ  2i
~

expˆ2i
~

exp3  into (73) yields: 

 









2

i
~

2

i
~

β
ζβ

β
ζβ cc tt  (75) 

This equation states that the convective derivative is nonzero only due to (convective) rotation of 

velocity direction.  

The equation of evolution of the scalar wave amplitude is obtained by multiplying  †  and 

adding the adjoint: 

 

   





βζβ

β
ζβ

βζ
β

β
ζβ

βζ
β

††

†

†

†

2

i
~

2

i
~

2

i
~

2

i
~































cc

c
t

c

c
t

ct

 (76) 

Which, in terms of the scalar polarization is: 

  acacat  ζ2222  (77) 

The relations between rotation angles and velocity unit vectors are: 

 
   

        







vvvv
2

vvvv

vv

vv

ˆˆˆˆ

ˆˆˆˆ

ˆˆ

ˆˆ

eeee

eeee

ee

ee tt

ζ

ζ

ζ

ζ

 (78) 

So that the above equation is indeed equivalent to the one-dimensional wave equation: 

  aeecat  vv
22 ˆˆ  (79) 

If we want to obtain the conventional 3D scalar wave equation: 
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acat
222   (80) 

Then the simplest corresponding first order equation is: 

0  βct  (81) 

3.5. Vector Waves 

"Quantum mechanics is certainly imposing. But an inner voice 

tells me that it is not yet the real thing. The theory says a lot, but 

does not really bring us any closer to the secret of the "Old One." 

I, at any rate, am convinced that He is not playing at dice. Waves 

in three-dimensional space whose velocity is regulated by potential 

energy (for example, rubber bands) . . ." 

Albert Einstein, 1926 [Einstein and Born 2005]  

 

Next we consider vector waves (polar or axial vectors). An arbitrary polarization vector can 

be described by a scalar amplitude and three rotation angles. Since scalar waves require five 

parameters, we expect vector waves to require eight parameters. As with velocity rotations, only 

two angles are necessary to determine the direction of polarization, but a third angle is necessary 

for a local description of changes in the polarization direction. 

3.5.1. Rotation of Polarization 

Recall that the scalar polarization is  Ta  .  We now regard this as one component of a 

vector:  33
Ta  . The vector a could be polar or axial, but we will assume an axial vector 

(pseudovector). The three orthogonal polarization matrices are: 










































































1000

0100

0010

0001

,

0i00

i000

000i

00i0

,

0100

1000

0001

0010

321   (82) 

The symbol ( i ) is a unit scalar imaginary which is even under spatial inversion since the spin is 

a pseudovector. 

These matrices have the same commutation relations as the Pauli matrices and the velocity 

matrices (i): 

ijijji  2  ;  kijkijji  2  (83) 
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The rotation operators for this space are similar to the velocity matrix rotation operators: 

        iijjiijiijiiij
R  sin

2

i
cos2iexp2iexp   (84) 

We could simply generalize the wave function to be: 

      03
21

0 2exp2i
~

exp2iexp  ζβξσ  a
 (85) 

We might then attempt the interpretation: 

 jijiS
†  (86) 

However, there are nine tensor components (plus three components of the time derivative) and 

only eight independent components of the bispinor. Therefore this interpretation is not 

satisfactory. 

Instead, we will assume a single rotation operator for both wave velocity and polarization. Since 

the one-dimensional velocity is 33cv  , the three-dimensional velocity for vector waves is 

σv 3c . The  matrices which described velocity for scalar waves now represent directions 

relative to velocity, with 3 representing the parallel direction. This notation is called the “chiral 

representation” of velocity.  

Alternatively, we could associate any of the matrices i with velocity by rotating in the relative-

velocity space of  matrices. Such a rotation is called a change of “representation”. The form 

σv 1c  has the form originally used by Dirac, and we will use these matrices for velocity. 

Historically, a different notation has been used for the  matrices. Instead of ( 321 ,,  ), these 

matrices have been called (
045 ,,  ). However, we will continue to call them  matrices except 

when comparing with standard results from other literature. 

3.5.2. Factorization and First-Order Wave Equation 

The three-dimensional bispinor wave function may have a Lorentz boost with arbitrary 

magnitude and direction, and may also be rotated by an arbitrary angle . These operators are 

contained in the factorization: 

    01
21

0 2exp2iexp  ασξσ  a  (87) 

The wave function has seven free parameters: an amplitude, three rotation angles, and three 

velocity parameters. There is one additional degree of freedom which determines the definition 

of the relative directions 2 and 3. These are defined with respect to the velocity axis by the 

operator   01 2i
~

exp  , so that the wave function is [Hestenes]: 
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      011
21

0 2i
~

exp2exp2iexp  ασξσ  a  (88) 

Now we would like to know the equation of evolution of the wave function. Generalizing the 

scalar wave equation (73) to include arbitrary gradient direction yields: 

  σ1ct  (89) 

These terms account for wave propagation in an arbitrary direction.  

To see the wave equation in terms of observables, multiply j †  and add the transpose equation 

to obtain the time derivative of the polarization: 

       σσσ 1
†

1
†

1
†† i cct  (90) 

The terms in this equation are naturally associated with spinors by the following definitions: 

 
   

   





ikkiijkj

jj

jtjt

cc

cc

a







1
†

1
†2

1
†2

†2

ia

a  (91) 

These identifications yield the wave equation: 

aa 222  ct  (92) 

 The interpretation of the spinor wave functions must be self-consistent. For example, the 

first two identifications require: 

    0†
1

†   σct  (93) 

This relation is easily derived from equation (89). 

Also from (89): 

    01
†2†   σct  (94) 

This is the quantum mechanical continuity equation. This is the three dimensional generalization 

of the 1-D equation: 

022  BzzFzzBttFtt acacaa  (95) 
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3.5.3. Convection and Rotation 

Adding terms for convection and rotation to the bispinor wave equation yields: 

 φwuσ  1ct  (96) 

From the wave factorization we can substitute minus the angular derivative (for passive rotation) in the 

final term: 


2

i1
σ

wuσ  ct  (97) 

To see the wave equation in terms of observables, multiply j †  and add the transpose equation 

to obtain the time derivative of the polarization: 

          σwσueσ
††

1

†

1

†

1

†† ˆi  jikkiijkt cc  (98) 

These identifications yield the equation of a wave propagating in a moving medium: 

awauaa   222 ct  (99) 

Using equation (97) now yields different continuity conditions: 

      01
††2

1
†   uσct  (100) 

Consistency with our definition of variables requires that: 

  01
†  u  (101) 

Also from (97): 

      0†
1

†2†   uσct  (102) 

The continuity equation now includes an additional convection term. 

Next, we will interpret the wave polarization. 

3.6.  Waves in an Elastic Solid 

"I am never content until I have constructed a mechanical model of the subject I am studying. If I 

succeed in making one, I understand; otherwise I do not."  
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William Thomson (Lord Kelvin) 1904 [Baltimore Lectures on Molecular Dynamics and The 

Wave Theory of Light] 

 

3.6.1. Basic Assumptions 

We make the following basic assumptions:  

1.  The elastic solid is characterized by an inertial density  and coefficient of elasticity , with 

characteristic wave speed c .  

2. There is a linear response to variations of orientation angle Θ  relative to equilibrium. This means that 

an initial static perturbation (with velocity u=0) would yield the response: 

 0 if222  uΘΘ ct  (103) 

3. The velocity field u has no compression 0 u . Therefore the velocity may be written as the curl of 

a vector field: 

 Ju 
2

1
 (104) 

The vector field J  is called the conjugate angular momentum density. It differs from the usual 

definition of angular momentum density urJ   in that it is independent of the choice of origin 

and can have arbitrary direction. If |u| falls to zero sufficiently rapidly toward infinity, then kinetic 

energy may be expressed as   22 323
JwdrudrK  , where 2uw   is the angular 

velocity, or vorticity (for rigid rotations, |u| does not vanish at infinity and the relation between u and 

J  has opposite sign). Hence J  is the variable conjugate to angular velocity for a Lagrangian which 

depends on u only through the (positive) kinetic energy.  

Additional assumptions will be introduced in order to simplify the mathematics, and these may limit the 

generality of the results. 

3.6.2. Equation of Evolution 

Starting from (103), we define an angular potential Q such that: 

ΘQ 42   (105) 

The static condition for Q is: 

   0 if02222  uQQ ct  (106) 

Define the spin angular momentum as: 

QS t  (107) 
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The static condition is then: 

   0 if0222  uQS ct  (108) 

When motion is present, it contributes to the time derivative only through convection ( Su  ) and 

rotation ( Sw  ): 

  0222  SwSuQS ct  (109) 

This assumes that there are no velocity-dependent forces such as frictional damping. From here on, we 

will consider only wave-like solutions satisfying: 

022  SwSuQS ct  (110) 

For oscillatory solutions to this equation, the first two terms are always in phase ( QQ
222  ct ), 

whereas the velocity-dependent terms may have different phase. However, if the velocity-dependent 

terms do not add to zero then they must have the same phase as the linear terms:  

 QrSwSu
2  (111) 

where  r
2  is some function of position (more generally,  r

2  could have different values for each 

component of Q). Substitution yields: 

  02222  QrQQ ct  (112) 

If  r
2  is constant and positive, then this is the Klein-Gordon equation, which is ordinarily associated 

with bosons. 

Now our only remaining task is to solve for the velocity in terms of other wave variables. To do this we 

note that, as discussed above, the wave equation (8) can be written in terms of a four-component complex 

Dirac bispinor ( ) using the following identifications: 

 

   

   





ikkiijkj
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jtjt
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cc

Q







1
†

1
†2

1
†2

†2

2

i

2

1

2

1

Q

Q  (113) 

The matrices jc 1  are the Dirac velocity matrices, more conventionally denoted as jc  5
.  

The above identifications provide 7 constraints on the 8 free parameters of the Dirac 

bispinor. In terms of bispinors, the rotational wave equation (109) is: 
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     
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†

1
†

1
††









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w
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t
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 (114) 

Expanding the derivatives yields: 

0c.c.
2

i
1

† 







 
σ

wuσctj  (115) 

where (c.c.) represents the complex conjugate. The Hermitian conjugate wave function may be 

regarded as an independent variable (the independent real and imaginary parts of the wave 

function are linear combinations of elements of   and  † ). Validity for arbitrary †  requires 

the terms in brackets to sum to zero. This yields the Dirac equation: 

0i
2

i
1  

σ
wuσct  (116) 

where   may be any operator with the property: 

  0iRe †  j  (117) 

Since   has no effect on physical quantities, we assume it to be zero. 

Now we construct a Lagrange density. Lagrange‟s equations of motion for a field variable   are: 

   
0


















LLL

j
j

j
t

t   (118) 

A similar equation holds with 
† replacing . The Lagrange density for rotational waves is 

therefore: 

 
















 
2

iiiRe †
1

†† σ
wuσctL  (119) 

Using the Hermitian conjugate of (118) yields simply 0
†
 L . The conjugate 

momentum to the field † is p : 

 
†i


 






t

p
L

 (120) 

We assume that we can neglect boundary terms in the integration by parts of: 
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       SuSuSw
333 drdrdr  (121) 

The conjugate momentum for r is: 

  u
S

u
pr  









2
iRe †L

 (122) 

This conjugate momentum was derived under the assumption that u is an independent 

variable. Identification of rp  with u is justified by the lack of external forces, implying that u  

enters the Lagrangian only through the kinetic energy.  

Making u a function of   introduces a factor of 21 : 

    
2

††
1

††

22

1
iRe

2

1
iiRe 








 




σ
σctL  (123) 

Variation of this Lagrange density determines the evolution of rotational waves:  

0
2

i1  
σ

wuσct  (124) 

where velocity u and vorticity 2uw   are determined from (20).  

3.6.3. Dynamical Variables 

3.6.3.1. Angular Momentum 

Recall that the velocity is the curl of an origin-independent angular momentum: 

 SLJu 
 2

1

2

1
 (125) 

We now identify the orbital ( Lu ) and spin ( Su ) contributions to velocity: 

 

S

L
†

2

1

iRe
2

1

uS

uL









 (126) 

The incompressibility condition 0 u  places an additional restriction on the wave 

function: 

     0
2

i
ii

2

1 †22††† 








  Lu  (127) 
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The usual definition of angular momentum depends on the choice of origin. If we define a 

rotational velocity as rφu  tR   and note that the vorticity is the instantaneous angular 

velocity ( φw t ), then from (119) the conjugate angular momentum would be: 

 
SLσr

φ
pφ 













 

2

1
i†

t

L
 (128) 

The quantity    i† rL  is called the „orbital‟ angular momentum, while  σS
†

2

1
  is 

called the „spin‟ angular momentum. Historically, the existence of „spin‟ angular momentum has 

defied explanation, yet we have derived it from a simple classical model. 

3.6.3.2. Energy and momentum 

In the Lagrange density defined above, the velocity-dependent term is clearly the kinetic 

energy density. This observation suggests that the Lagrangian has the form: 

  KUuct 








 EL 2
1

††

2

1
iiRe  σ  (129) 

where   t †iReE  is the total energy,     σ1
† iRe cU  is potential energy, and K is 

kinetic energy density.  

The Hamiltonian is the negative of the energy: 
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2
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σ
wuσLH  (130) 

 Hamilton‟s equation for the wave function is: 

 





 
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
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1
†

σ
wuσc
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t

HH
 (131)  

We can also define a Hamiltonian operator with  Ht i  (note opposite sign convention 

from quantum mechanics): 

2
ii 5 σ

wuσ  cH  (132) 

The Hamiltonian is a special case ( 0
0T ) of the energy-momentum tensor: 
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 






 



L
L






T  (133) 

The dynamical momentum density is derived from the orbital part of the angular momentum: 

 iii PT  †0 i  (134) 

This is identical to the momentum of relativistic quantum mechanics. 

The sign of the Hamiltonian (and Lagrangian) is simply a convention. In analogy with plane 

waves, the function  kxt cos  with 0  is equivalent to  kxt cos  with 0 . We could 

change the sign of the Lagrangian and Hamiltonian and still preserve the sign of the momentum 

by using covariant derivatives (  it  , ). However, such a relativistic construction is 

unnecessary and perhaps misleading since we are in fact dealing with Galilean space-time. The 

energy-momentum tensor components above  iPT ,0 E   may still be regarded as a covariant 

vector whose magnitude is the scalar 22 PE . The equation of evolution is of course unaffected 

by the choice of sign of the Lagrangian. 

3.7. Electron Waves 

“… a great step would be made when we should be able to say of 

electricity that which we say of light, in saying that it consists of 

undulations.” 

Sir George Gabriel Stokes, 1879 

3.7.1. Free Electron Equation 

The bispinor equation for angular momentum density is: 


2

i1
σ

wuσ  ct  (135) 

A formal solution is: 

   01 ,
2

iexp,

0

tcdtt
t

t

r
σ

wuσr 











 








  (136) 

3.7.1.1. Mass, Convection, and Rotation 

Dirac‟s derivation of the mass term simply required that each component of the wave function 

satisfy the Klein-Gordon equation. One possible formulation would be: 
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   311 ˆi eσσct  (137) 

The second-order equation is: 

  
2

3
2222 ˆ  ect  (138) 

which is equivalent to Klein-Gordon if the wave function is an eigenfunction of the operator 

 23ˆ e . The equivalent classical equation is: 

     
  



σe

eσ

1
†

3

1
†

1
†

1
††

ˆ

ˆi



 jikkiijkt cc
 (139) 

which can be equivalent to Klein-Gordon if    σσe †2
1

†
3ˆ  . 

3.7.1.2. Dirac Equation 

Dirac‟s choice of mass term differs from the one above: 

 31 i σct  (140) 

where 2cme . Other representations of this equation are: 

 

 notation mechanics quantum icRelativisti
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
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

σ

α

c

c

t

t
 (141) 

In quantum mechanics, Planck‟s constant   appears explicitly in the operators and the wave 

function is normalized to one for the purpose of computing correlations. However, physically it 

is more sensible to normalize the wave function to   so that it is clear that the wave function 

describes the evolution of angular momentum density. One can still compute correlations, of 

course, as we will see later. For consistency with traditional quantum mechanics, we will include 

the factor of   in our equations. 

The equation for spin angular momentum density is simply: 

      ikkiijkt cc  1
†

1
†

1
†† iσ  (142) 

which we interpret as an ordinary wave equation (the convection and rotation terms are 

presumed to cancel): 

    QQQQ 22222  ccct  (143) 
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Dirac‟s choice of mass term eliminates the mass from the second-order wave equation. One 

consequence of this choice is that the rationale for quantization via soliton waves is lost. So 

while Dirac‟s equation can be used in describing particle motion and interactions, it cannot 

explain the existence of discrete particles. 

Dirac also assumed that stationary states have the form: 




E
t i  (144) 

which has the formal solution: 

     00 ,iexp, ttt
E

t rr 

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




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

 (145) 

This solution is puzzling because the phase variation represented by the energy eigenvalue E 

does not correspond to any actual oscillation in real space. The phase simply cancels out when 

computing observables. A more reasonable starting point would be to neglect gradients in () to 

get: 

      00 ,
2

iexp, tttt r
σ

wr 








  (146) 

If the wave function is a spin eigenfunction    ss 2 , with eigenvalue s, then the 

exponent can be treated as a scalar, as in quantum mechanics. The energy eigenvalue would then 

represent twice the rotational energy ( Sw E ), consistent with an equipartition of energy 

between kinetic and potential energy. In this case there would also be no real oscillation. 

However, we can make this result sensible by assuming it to be an approximation. We suppose 

that the wave function is not exactly an eigenfunction of spin, so that there are oscillations in real 

space. For example, the spin direction may rotate at a rate small compared to the magnitude of 

angular velocity. For example, one can envision concentric spherical shells wobbling rigidly so 

that the top and bottom points from the equilibrium position rotate in circles about the z-axis, 

yielding a net average angular momentum. But we assume that the approximation of spin 

eigenfunctions is valid for the purposes of computing eigenvalues and correlations between 

states.  

Considering the lack of real oscillation in conventional quantum mechanics, it is interesting 

to note that physicists in the nineteenth century, led by William Thomson (Lord Kelvin), 

proposed a model of vacuum as consisting of a fluid filled with vortices. This model is called the 

vortex sponge, and still has its adherents today. The model is also has relevance to the behavior 

of liquid helium. This model would eliminate the requirement of oscillation, since steady flows 

are possible in a fluid. The model can also produce shear waves propagating among the vortices. 

But the model is conceptually more complex that the elastic solid, so we will not pursue it here. 

If we neglect gradients in the electron equation, we have: 
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 3 E  (147) 

which has solutions: =[1 0 0 0]T and =[0 1 0 0]T for E=  , and =[0 0 1 0]T and =[0 0 0 1]T 

for E=  . For each sign of E, the two solutions differ in the sign of the x3-component of spin. 

These solutions are referred to as “spin-up” and “spin-down” solutions. The positive and 

negative signs of E are assumed to correspond to matter and anti-matter, respectively. We will 

now examine the relationship between matter and anti-matter further. 

3.7.1. Angular separation 

Recall Dirac‟s equation for a free particle: 

 31 i σct  (148) 

The operator σ  can be factored: 
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The two-component angular solutions of the eigenvalue equations 
  


1, lmlLσ  and 

    


12, lmlLσ  are well known (e.g. (Bjorken and Drell 1964)), and are derived in 

the Appendix. These two angular solutions are related by 
     mlmlr ,,  and yield opposite 

eigenvalues of the parity (spatial inversion) operation. 

These angular solutions may be combined to form two independent wave functions: 

 
 

 
























ml

ml

F

G

r
,

,i
~

1
     or    

 
 

 
























ml

ml

G

F

r
,

,i
~

1
  (150) 

3.7.2. Velocity Rotation and Mass 

It is instructive to compute the effect of mass on the wave velocity: 
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 (151) 
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The mass term represents a radial acceleration of the wave, which is inward provided that the 

appropriate sign is chosen for . This result implies circular propagation, consistent with the 

explanation of the relativistic mass-energy relation given in Chapter 1.  

3.7.3. Wave Interference and Potentials 

Next we investigate the origin of electromagnetic potentials. Certain observables (scalars and 

vectors) should be additive when two waves are superposed. This implies that when two waves 

A and B are superposed, the total waveT has the property that: 

BBAATT GGG  †††


 (152) 

for some linear Hermitian operator G. If we simply added the two wave functions, we would 

have instead: 

    ABBABBAABABA GGGGG  †††††† 
 (153) 

The additional terms are clearly not zero in general. However, they can be forced to zero by 

introducing phase shifts to the wave functions. Using a subscript zero to represent each wave 

function in the absence of interference, let: 

  

  0

0

2iexp

2iexp

BAB

ABA








 (154) 

The relative phase shift  could be distributed between the two waves or incorporated into A 

and B, but we will treat A as the „test wave‟ and B as the „source wave‟ and require the 

condition below to hold even with A and B equal to zero. Linear addition of the observable G 

requires: 

0
††

 ABBA GG 
 (155) 

If either wave function is an eigenfunction of some additive observable such as spin 

( AAG    or BBG    for some scalar ), then this result reduces to: 

0††  ABBA   (156) 

In terms of the unperturbed wave functions: 

      02iexp2iexp 0
†

00
†

0  ABABBBAA   (157) 

If we interpret the quantity BA †  as a two-particle state, then interchanging the two particles 

yields: 
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  BAABBABA  ††† 


 (158) 

This means that the two-particle state is anti-symmetric with respect to exchange of particles. 

This symmetry is called the Pauli Exclusion Principle because it prohibits two identical fermions 

from being in the same state ( BA    yields AAAA  ††  ). Thus the Pauli Exclusion 

Principle results from the arbitrary separation of the complete wave function into two 

independent parts.  In quantum mechanics, the two-fermion state is typically constructed as: 

2

††

,
BAAB

BA





  (159) 

so that the Exclusion Principle is automatically satisfied. 

The constant phase shift   has no effect on dynamics. However, some observables computed 

from these independent wave functions may differ from those of the free particle wave. For 

example: 

     AAAABBAAA GGG   ††
0

†
0 2iexp2iexp  (160) 

Hence the effect of wave interference is to change the operator for wave packet A  from G to 

AG : 

   2iexp2iexp BBA GG   (161) 

Applying this rule to the operators t and H yields: 

          ABBABtBt H  2iexpi2iexp2iexp2iexp   (162) 

2
ii 1

σ
wuσ  c

H


 (163) 

Substituting the general form of the Hamiltonian: 

      0
2

i
2

i

2

i

2

i
11































BBABBBABA

BBBBtt cc









φφuuuu 

 (164) 

Substituting the mass term for the free electron: 
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    0i
2

i

2

i

2

i

2

i

3

11






























AABABBAB

ABABtt cc





φuuu 



 (165) 

Since we are interested in the effects of the phase shift, we will neglect the extra terms which are 

independent of B (without explicit justification). We then define the electromagnetic potentials 

as: 

Au

A

c

ee

ce

Bt

B













2

1

2
 (166) 

Although the vector potential A is a gradient, its curl (the magnetic field) may be nonzero 

because B  is a phase angle which may be multi-valued. For example, the multi-valued function 

 12arctan xxB   has gradient components: 

  

  212
2

2
1

1
2

212
2

2
1

2
1

xx

x

xx

x

B

B













 (167) 

The curl of this gradient is clearly non-zero. See Kleinert (2007) for a discussion of multi-valued 

potentials in electromagnetism.  

With these definitions, the electron equation in the presence of another wave becomes: 

0iii 311 
















 AAAt

e
c

e
 A


 (168) 

Hence electromagnetic potentials result from wave interference under the assumption that 

different wave packets are independent. The above analysis is not very precise, however, as we 

neglected changes in medium velocity and vorticity, and did not specify which observables 

should be additive (total momentum density and total angular momentum density should both 

have this property). A complete analysis of particle interactions would require knowledge of the 

soliton wave functions of each particle. 

Setting  HAt i , the modified Hamiltonian is: 

311i   Aσσ
c

e
cceH  (169) 
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Multiple source waves may be treated sequentially, at least as a first approximation. For a given 

test wave, make it independent of the first source wave as above. Then take the modified test 

wave and make it independent of the second source wave. Repetition of this process for all 

source waves results in the addition of phase shifts or equivalently, the addition of potentials. 

Matter and anti-matter solutions are assumed to yield opposite signs of phase shift. One may also 

infer that soliton waves with identical long-range (electromagnetic) potentials (e.g. positrons and 

protons) also have identical bispinor wave functions at large distances from their centers. 

In quantum mechanics, it is necessary to treat various wave packets as independent „particles‟.  

However,  with a classical wave theory of matter it may be simpler to solve the single equation 

for the total angular momentum density, then decompose the solution into soliton „particles‟ for 

comparison with experiment. 

3.7.4. Lorenz Force 

In terms of electromagnetic potentials, the modified Hamiltonian is: 

311

11

i

2
ii









Aσσ

σ
wuAσσ

qcq

qcq
H

  (170) 

Recalling the u-dependence of q and w (and our change of sign of H), the conjugate momentum for r 

is now: 

   
qApuA

uu
pr 










c

q

c

qL
0

† i
H









 (171) 

where    i†
0p  is the free particle wave momentum. 

 The time derivative of any observable Q is: 

         QQHQQQQ ttttt  †††††† ,i  (172) 

An example of this is the force density. Substituting the linear wave momentum for Q yields the 

Lorenz force law: 



































































EBσAAσ

AAσAσp

q
c

q
c

tc

q
q

c

q
c

tc

q

c

q
cq

c

q
ct

1
†

1
†

11
†

 (173) 

where E and B are the usual electric and magnetic fields, respectively. Hence the Lorenz force 

has a straightforward interpretation in terms of classical wave interference.  



3-39 

 

3.7.5. Magnetic Moment 

The equation of evolution in electromagnetic fields is: 

   311 iii  Aσσ qcqt  (174) 

Using two-component spinors with  T21,  , this equation can be separated into two 

coupled equations: 

   
    212

121

iii

iii









Aσσ

Aσσ

qcq

qcq

t

t
 (175) 

Let   11 exp  ti  and   22 exp  ti . Substitution yields: 

   
    0ii2i

0ii

12

21









Aσσ

Aσσ

qcMq

qcq

t

t
 (176) 

Next, assume that   22 i2i   qt . This yields: 

    
0

i2

ii
i 11 




 

AσσAσσ qcqc
qt  (177) 

This is the Pauli equation [], which was the first equation to incorporate electron spin. 

     
   

11
2

ii
i 













 q

qcqc
t

AσAσ
 (178)

 

Using the commutation relations for the Pauli spin matrices: 

       

     
   1

2

1
2

11

i

iiii

iiii







Bσ

AσAσ







qcAqc

AqcAqcAqc

AqcAqcqcqc

ii

jjiikijkii

jjjiii

 (179) 

Substitution yields: 

 
1

2

1
2

i
i 

















 q

qcAqc ii
t

Bσ
  (180) 

This equation is of course simply an approximate equation for two components of the Dirac 

wave function. Nonetheless, it is of historical importance because it was used by Pauli to include 

effects of electron spin. Without the spin term, the resultant scalar equation is the one Schrödinger 

first used to compute the hydrogen energy levels: 
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 
  






























 q

mc

p
q

Aqc ii
t 2

22

22

i
i   (181) 

Schrödinger‟s equation is currently the conventional starting point in the study of quantum 

mechanics. Although simpler than the Dirac equation, it is far less intuitive.  Both Lorentz 

invariance and the connection with spin angular momentum have been lost. 

In a weak, uniform magnetic field with 20 rBA  , we can neglect A
2
 to obtain: 

 

  
  10

2
2

1
0

22

1
00

22

1

2
222

i

2

i
i






















































q
mc

q

m
q

qcc

q
qcqcc

t

sLB
σrB

BσrB






 (182) 

The final form with the spin angular momentum operator ( 2σs  ) is obtained by 

comparison with the angular momentum operator (128). This result is significant because it 

shows that, in this approximation, the coefficient of spin angular momentum is twice the 

coefficient of orbital angular momentum in the electron magnetic moment: 

 SLμ 2
2





cq

 (183) 

A free electron with eq  , 0L , and 21S , has magnetic moment equal (within 0.1%) to 

the Bohr magneton eV/T1078.52 5mce . 

3.7.6. Spin Waves 

Consider the equation for the evolution of spin (110): 

022  SwSuQS ct  (184) 

If we neglect the spatial gradients, we have: 

SwS t  (185) 

The vorticity is given by: 

  







 Suw

2

1
iRe

2

1

2

1 † 


 (186) 

Keeping only the term involving spin yields: 
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  SSSSS  2

4

1

4

1


t  (187) 

This equation describes the simplest form of a „spin wave‟, which is commonly observed in 

ferromagnetic materials. 

3.7.7. Measurement Correlations 

It is widely believed that the correlations between polarization measurements of entangled 

particles cannot be predicted classically. This belief is based on correlation predictions using an 

equation of the form: 

        nnnn ddBAP  ...,...,,...,,,...,,, 1111 baba  (188) 

where i represent variables which describe the state of the system,  n ,...,1  is the 

probability distribution of these variables, a and b are the measured polarization directions for 

the two entangled particles, A and B are the theoretical outcomes of the measurement (±1), and 

P(a,b) is the correlation.  

John Bell [1964] proved that quantum correlations cannot be represented in this form. In 

particular, he proved that for three different measurements  nA  ,...,, 1a ,  nB  ,...,, 1b , and 

 nC  ,...,, 1c : 

     cabacb ,,,1 PPP   (189) 

This condition is violated by quantum mechanical (and physically observed) correlations, which 

can be measured using two or more particles whose spins are constrained. For example, if a pair 

of spin ½ particles is produced with opposite spin, the correlation between their spin 

measurements by detectors oriented with relative angle  is: 

 cos)(pair C  (190) 

This correlation violates Bell‟s condition. For example, if the detectors a, b, and c are oriented at 

angles 0, /4, and 3 /4, respectively, then:  

   
   

   

     cabacb

ca

cb

ba

,,,1

2143,

02,

214,

CCC

CC

CC

CC















 (191) 

The key assumption of Bell‟s Theorem is that the correlation is computed by multiplying the 

theoretical measurement results, A and B, in the integral. This assumes that for a given set of 

parameters, the measurement result essentially propagates to the detector along with the particle. 
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In fact, however, it is the spinor wave function   which propagates from place to place since the 

first order Dirac equation is a kind of convection equation. Therefore Bell‟s Theorem does not 

generally apply to classical waves.  

To compute the correlation between two bispinor wave functions, consider the following 

properties: First, the magnitude of the wave function must be second-order in each of the 

components and positive-definite. Therefore: 

 †  (192) 

Second, physical variables are bilinear in the wave function. Therefore it is the squared 

magnitude which is of physical interest. The un-normalized correlation C0 between two functions 

must be defined in such a way that the squared norm 
2

†  is the self-correlation: 

 
2

†
0 , BABAC    (193) 

Dividing by the magnitudes of each wave function yields the normalized correlation C: 

 
 

BBAA

BA

BBAA

BA
BA

C
C










††

2
†

††

0 ,
,   (194) 

The correlation between states related by rotation  φR  about an axis perpendicular to the spin 

is: 

 

2
cos2

2
†

2
†








φR
C  (195) 

The correlation for angle  φφ ˆ  is     2sin2cos 22   .   

Assuming that spin measurements are coincident or anti-coincident in proportion to the 

correlations between the spinor wave functions, the correlation Cs between spin measurements 

separated by angle φ  is: 




  cos
2

sin
2

cos)()()( 22  CCCs  (196) 

In the case of pair production in EPR-type experiments, the spins of the two electrons (or 

electron and positron) are opposite (changing   to  above), thereby changing the sign of the 

correlation. Hence the classical correlations are in agreement with the quantum correlations. 
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3.7.8. Quantum Mechanics 

In the preceding section we computed the correlation between two states related by rotation. 

The two states may be denoted by (r,t) and R()(r,t). The correlation at a given position and 

time is given by (195). A more global correlation between two wave functions 1(r,t) and 2(r,t) 

at a given time is obtained by integrating over space: 











rdrd

rd

rdrd

rd
C
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†
2

3
1

†
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3
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†
2

3
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†
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3
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†
1

2
3

2
†
1








 (197) 

The correlation between spin one-half states is non-negative, and the correlation of a wave 

function with itself is unity. These properties provide the basis for a probabilistic interpretation 

of the wave functions. A given wave function may be decomposed into multiple wave functions 

(states), and the correlation between the wave function and each „state‟ may be computed. In 

quantum mechanics, this correlation is interpreted as the probability of detecting that state with a 

measurement.  

This means that correlations between physical states (as opposed to measurements) are equal 

to the square of a complex amplitude. This fundamental property of quantum mechanics has 

mystified generations of physicists. Yet we can now see clearly that this property of matter is due 

to the simple fact that independent wave states are 180 degrees apart. 

 

Temporal evolution of the wave function is expressed as: 

     12 ,,iexp,
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


  (198) 

Therefore the correlation between an initial state 1(r,t1) and a final state 2(r,t2) is: 

    

 



 








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



r

 (199) 

 

In quantum mechanics, the states are normalized to one: 

21
3†





rd


  (200) 
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Dropping the primes, the correlation integrals are then written in the form: 

      

2

11

2

121122

2

1

,iexp| 















t

t

dttHttC r  (201) 

In quantum mechanics, this correlation represents the probability density for the initial state 1 to 

evolve into the final state 2.  

3.7.9. Fermions and Bosons 

Particles whose correlations are computed according to the above rules are called “fermions” 

in honor of the physicist Enrico Fermi.  Fermions are considered to be the “fundamental 

particles” of nature. These include electrons, protons, neutrons, neutrinos, and quarks. Recall that 

the Pauli exclusion principle was derived from the assumption that the particle wave functions 

were eigenfunctions of an observable (e.g. spin). If this is not the case, then there is no exclusion 

principle. 

Particles which can be superposed are called “bosons” in honor of physicist Satyendranath 

Bose. Examples include photons and  mesons. Multiple bosons may coexist with each in 

exactly the same state (and same position). In quantum mechanics the boson two-particle wave 

function satisfies: 

0
††

 ABBA   (202) 

This condition is always satisfied if BA   , so there is no exclusion principle. 

To see how spin is related to statistics, consider a massless photon which in the plane wave 

approximation satisfies the equation: 

  QkkQQ  ˆˆ222 ccc ttt  (203) 

Either   0ˆ  Qkct  or   0ˆ  Qkct . In either case the vector Q obeys a convection 

equation and is therefore the quantity used to compute correlations. Q is a vector, which 

transforms under rotation with spin one. Multiple photons can be superposed simply by adding 

their Q values without the interference associated with spinors. 

For another example, suppose fermions A and B are somehow bound together with a joint 

wave function BA,  which satisfies the exclusion principle: 

2

††

,
BAAB

BA





  (204) 



3-45 

 

If we use  BA,  to compute correlations with an identical particle composed of fermions A′ 

and B′, we have (noting that the order of column vectors is irrelevant since they may be regarded 

as diagonal square matrices): 

0
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††††††††
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†
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

 (205) 

Hence composite particles formed from two fermions behave statistically like bosons. 

In the Standard Model of Physics, the viewpoint is that fundamental particles are fermions 

which interact through fields, and particles associated with the fields are bosons. We have seen 

how this interpretation can arise from an underlying classical wave process. 

3.7.10. Prior Knowledge and Statistics 

Interpretation of quantum statistics can be confusing. Consider the case of Schrodinger‟s cat 

in Figure[]. The cat is place in a box which contains a radioactive element, a radiation detector, 

and a poisonous gas. If the detector is triggered by a radioactive decay then it will in turn trigger 

the release of the poison and thereby kill the cat. According to quantum statistics, at any given 

time there is not merely a chance that the cat will be dead or alive, but the mathematical 

description involves a complex amplitude for each possibility. Just as electron statistics were 

described above by a complex superposition of „spin up‟ and „spin down‟ states, the cat‟s fate is 

described by a complex superposition of „alive‟ and „dead‟ states. Physicists are therefore 

tempted to say that the cat is in a superposition of living and dead states, which is rather absurd. 

There are different ways to resolve this paradox, but the simplest resolution is to say that the 

cat really is either dead or alive, and not both. The complex amplitude merely indicates our 

knowledge (or lack of knowledge) of the situation. Physicists previously rejected this logic 

because they never realized that classical statistics (e.g. the probability that the cat is dead) 

should be computed in exactly the same manner as the quantum statistics. The Copenhagen 

interpretation  of quantum mechanics posits that the statistical interpretation of the complex 

wave function is also the physical interpretation (i.e. there are no deterministic physical variables 

because if there were then their correlations would be computed differently). However, we can 

obtain the same correlations without the bizarre interpretation that the cat is partly alive and 

partly dead until we open the box. 

3.7.11. Hydrogen Atom 

The proton produces a Coulomb potential ( rZee 2 ). Neglecting the vector potential in the 

electromagnetic electron equation (168) yields: 
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 31 ii 







 σc

e
t


 (206) 

Assume as before a temporal eigenvalue  Et i , and assume that the angular 

eigenfunction 
 

 ml,  has even parity and 
 

 ml,  odd parity. A wave function of the form    

yields the coupled radial equations: 
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 (207) 

Solutions to these coupled equations are obtained as follows (e.g. Schiff 1968): 

For large r the asymptotic equations are: 

 
  0

0





GcFE

FcGE

r

r
 (208) 

which combine to yield: 

  02222  FcFE r  (209) 

We are seeking a bound state with 
22 E . Therefore the asymptotic behavior 

is  rF  exp  with   22 cE . 

Now let: 

     
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
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 (210) 

The coupled equations become: 
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 (211) 

Assume that f and g can be written as power series: 
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 (212) 

Let cZe 2 and match powers of r: 

   
    0
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gsccfgcfE

fsccgfcgE
 (213) 

We can eliminate the –1 terms to get a relationship between f and g: 

            fsccEgcscE  22  (214) 

which for large  becomes    fcgE  . 

For =0: 
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 (215) 

The determinant for these coupled equations must be zero. This condition yields a solution for s: 

22  s
 (216) 

Recall that the actual wave function contains an additional factor of 1/r. Therefore we choose the 

positive sign here so that the solution is regular (or only slightly divergent if |s|<1) at the origin. 

 

Using the relation between coefficients derived above, the asymptotic behavior for large  is: 

02

02

1

1

















gg

ff
 (217) 

The ratio between successive terms matches the Taylor series expansion for exp(2r): 

   


0
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1
2exp






 rr  (218) 
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If the series proceeds to infinite  then the wave function would be infinite at large values of r. 

To make the wave function finite, the series must terminate at some finite value of . Calling this 

value n', Eq. (213) yields the relation between the highest coefficients: 

  nn fEgc    (219) 

Combining this relation with eq. (214) yields an expression for the characteristic frequencies: 

     212222 EnscnscE    (220) 

Solving for E : 

   21221


 nsE   (221) 

These are the discrete energy levels of an electron in a Coulomb potential. The factor of  , 

which relates energy and frequency, is assumed to be the integral of the squared wave function. 

Denote the energy by E  and mass by  2cme . These energy levels were actually 

derived by Sommerfeld [1916a] using the model of a relativistic particle propagating in elliptical 

orbits. 

There are two main sources of discrepancy from the actual hydrogen energy levels. First, 

we assumed a static potential, implying that the nucleus is unaffected by the presence of the 

electron wave. By analogy with particles we can improve the calculations by replacing the 

electron mass  = mec
2
 with the “reduced mass”  pepe mmmmc  2 , where mp is the 

proton mass. Second, we have neglected any effects of the magnetic vector potential. 

The energy levels are typically classified using a positive integer principal quantum 

number n and positive half-integer angular quantum number 21 J : 

nJn 
2

1
 (222) 

In terms of these quantum numbers the energy levels are: 
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  (223) 

The table below compares measured energy levels (relative to the ground state) with energy 

levels calculated using this formula. The configuration label (nL) includes the principal quantum 

number n followed by a letter code for the orbital angular momentum L: s=0, p=1, d=2, f=3, etc. 
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Notice that the formula above does not distinguish between different L values for the same n and 

J. 

 

Configuration J Measured Level (eV) Level Computed from (221) 

     

1s 1/2 0 0 

2s 1/2 10.1988101 10.1988390 

2p 1/2 10.1988057 10.1988390 

2p 3/2 10.1988511 10.1988843 

3s 1/2 12.0874944 12.0875263 

3p 1/2 12.0874931 12.0875263 

3p 3/2 12.0875066 12.0875397 

3d 3/2 12.0875065 12.0875397 

3d 5/2 12.0875110 12.0875442 

4s 1/2 12.7485324 12.7485650 

4p 1/2 12.7485319 12.7485650 

4p 3/2 12.7485375 12.7485707 

4d 3/2 12.7485375 12.7485707 

4d 5/2 12.7485394 12.7485726 

4f 5/2 12.7485394 12.7485726 

4f 7/2 12.7485404 12.7485735 

n  13.5984340 13.5984671 

 

Table II. Measured and computed hydrogen energy levels. 

Ralchenko, Yu., Jou, F.-C., Kelleher, D.E., Kramida, A.E., Musgrove, A., Reader, J., Wiese, 

W.L., and Olsen, K. (2007). NIST Atomic Spectra Database (version 3.1.2), [Online]. Available: 

http://physics.nist.gov/asd3 [2007, May 8]. National Institute of Standards and Technology, 

Gaithersburg, MD. 

 

 While the agreement with experiment is good, it must be noted that the assumed 

Coulomb potential is simply empirical (as it is also in conventional quantum theory). For a 

complete theory the potentials of the nucleus should be derived from its free particle wave 

function.  

3.8. Symmetries 

“I cannot believe that God is a weak left-hander…” 

 Wolfgang Pauli 
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3.8.1. Spatial inversion 

Spatial inversion (conventionally called the parity operation, P, though we will use the letter 

M for mirroring) is the process of inverting the three spatial axes. This operation corresponds to a 

mirror image followed by a 180 degree rotation about the axis perpendicular to the mirror. Since 

rotation does not affect any physical laws, we will sometimes substitute the term “mirror image” 

for “spatial inversion” when referring to general physical consequences. Parity conservation is 

generally taken to mean that when spatial inversion is applied to any physical process, the 

resulting process is equally frequent in nature. Parity violation means that a process and its 

mirror image are not equally likely, and maximal parity violation means that spatial inversion of 

a physical process yields a process with no physical interpretation. 

In this chapter, we are not interested in the relative frequency of occurrence of events and 

their mirror images.  We are only concerned with the question of maximal parity violation: “Is 

the mirror image process possible in nature or not?”  We will refer to maximal parity violation as 

“mirror asymmetry”, and existence of a mirror image process as “mirror symmetry.” 

When viewed in a mirror, all known physical processes appear to proceed as if matter and 

anti-matter were exchanged. The simplest explanation for this observation is that spatial 

inversion exchanges matter and anti-matter. Let us consider how the wave function changes 

under spatial inversion. 

3.8.1.1. Conventional parity operator 

Dirac‟s original equation for a free particle has the form: 

 31 i iit c  (224) 

where 2mc . The  -matrices may be taken as: 
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Where i
~

is the pseudoscalar imaginary, as will be seen below. 

The spin matrices  i 
utilize a true scalar imaginary ( i ): 
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Multiplying the Dirac equation by †  and adding the Hermitian conjugate equation yields a 

continuity equation: 

    01
††   σt  (227) 

This relationship is sufficient to establish the probability density (  † ) and current (  σ1
† ) 

as the components of a Lorentz four-vector. 

Although the above analysis is satisfactory, it is currently fashionable to use the notation: 

i
i  50

1
5

3
0 ;;   (228) 

and multiply each term in the original Dirac equation (224) by 0  to obtain: 

 
  i0

i
i

t c  (229) 

This procedure cannot have any effect on the transformation properties of the Dirac matrices. 

The conventional parity operator P is assumed to have the form:    rr   UP . It is 

derived from the requirement that the Dirac equation in the form (229) be invariant with respect 

to the transformation: 

      0i0  rrr  UUcU i
i

t  (230) 

Inverting the parity operator yields: 

      0i 1101   rrr  UUUcUUU i
i

t  (231) 

Equivalence with the original Dirac equation requires: 
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 (232) 

These conditions are satisfied by U= 0
. Within an arbitrary phase factor the conventional parity 

operator is therefore: 

     rrr   3
0P  (233) 

There are two problems with this derivation. First, the form    rr   UP  is not the most 

general possible operator. For example, the conventional charge conjugation operator includes 
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complex conjugation. Second, the matrix 3
0    is not inverted because it is presumed to 

represent a temporal component of a four-vector. This illusion is maintained by rewriting the 

probability density and current components as  0  and  i , respectively, with 0†  . 

This change of notation does not change the fact, however, that the probability density is 

independent of 0 . The matrix associated with the temporal part of the probability current 4-

vector is the identity matrix, not 0 .  This is an important flaw in the conventional derivation of 

the parity operator.   

Since the 4-vector (  † ,  σ5† ) is indeed Lorentz-invariant, there is absolutely no basis 

for the claim that 0  is a temporal component. On the contrary, we will show that 0  is 

geometrically related to wave velocity and may quite reasonably be inverted by spatial inversion. 

We will see that the resulting spatial inversion operator inverts all of the terms in the modified 

Dirac equation (229). 

3.8.1.2. New spatial inversion operator 

In discussing spatial inversion, it will be necessary to define two different unit imaginary 

numbers. As defined above, the product of spin matrices is a true scalar with respect to spatial 

inversion: 

321i   (234) 

The -matrices are not involved in spatial inversion, which inverts the wave velocity but not 

the spin. However, we can identify three matrices associated with polar vectors which have the 

same algebra as the -matrices. 

The   matrices define directions relative to the velocity vector σσ
5

1  cc  , where 

the brackets indicate expectation value.  One can also define absolute vectors 

( σσσ 321 ,,  ).
(1)

  If the wave function is an eigenfunction of velocity aligned with  a 

spatial axis xv so that  cc v 1 , then (using 12 v ): 
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 (235) 

These results follow from the fact that 1  is a reflection operator for both 2  and 3 , and the 

only number equal to its negative is zero. Therefore σ2  and σ3  are indeed perpendicular 

to velocity σ1  for velocity eigenfunctions. For example, in our notation the wave function 

 T1001
1
  is a simultaneous eigenfunction of 11 , 22 , and 33 . Therefore the 



3-53 

 

three vectors σ1 , σ2 , and σ3  are mutually orthogonal vectors (left-handed) in three 

dimensional space, at least for velocity eigenfunctions. The vector σ1  is parallel to 1x̂ . 

Rotation of the vector σ1  by 90 degrees about the relative vector 2  yields σ3 , which is 

parallel to 3x̂ . This is of course the same as rotation of 1x̂  by 90 degrees about 2x̂ , which is 

associated with the matrix 2 . It is therefore clear that for velocity eigenfunctions, the relative 

vectors represented by ( 321 ,,  ) are geometrically equivalent to the absolute vectors 

represented by ( 321 ,,  ). We assume that all three vectors σ1 , σ2 , and σ3  are polar 

vectors so that the vector space ( 321 ,,  ) does not have mixed parity. 

The matrix factor 3
0    in the conventional parity operator represents a rotation by 180 

degrees about the 3  axis ( 3x̂   in our example). This operation inverts only two of the three 

orthogonal vectors associated with velocity.  

Compare this situation with classical transverse waves in a solid. We could define an 

operator (analogous to the Dirac P operator) which reflects the equilibrium position of each point 

in the solid, and also reflects the wave velocity direction. We also invert local displacements and 

velocities along one of the two axes perpendicular to the wave velocity. The resulting “reflected” 

wave would propagate along just as one would expect for the spatially inverted wave. But of 

course the operator we defined is not the spatial inversion operator, because we failed to invert 

one of the axes of the local displacement and velocity of the solid medium (in total we inverted 

two of the three local axes, corresponding to a 180 degree rotation about the third axis). 

Similarly, the Dirac P operator inverts the “wave” (or “particle”) velocity direction, but inverts 

only one of two other quantities which are geometrically related to the “wave” velocity (a 180 

degree rotation in the velocity-representation space). We will derive a new spatial inversion 

operator which inverts all three vectors σ1 , σ2 , and σ3  associated with velocity. 

The spin matrices i are components of a pseudovector and should not be inverted. Therefore the 

spatial inversion must be accomplished by inverting the three relative matrices ( 321 ,,  ). This 

requires that the associated imaginary i
~

 be a pseudoscalar, as assumed above. The unit 

imaginary associated with mass is assumed to be a pseudoscalar since it is multiplied by ( 3 ) in 

the original Dirac equation. 

The roles of the different imaginaries can be clarified by factoring the Dirac wave function in 

a manner similar to that of Hestenes [1967]: 

        011
21 i

~
expexpiexp  iiiiar  (236) 

It is clear that 2i kjijki    is associated with rotation in the plane orthogonal to the xi 

axis. Similarly, 321i
~

   is associated with rotation in the velocity-representation space.  
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Next we define a new wave function in which all imaginary pseudoscalar factors are 

inverted:    i
~

i
~#  . This pseudoscalar conjugation operation differs from complex 

conjugation, which inverts both scalar and pseudoscalar imaginaries. Pseudoscalar conjugation 

inverts 2  since: 

       2
†#

2
†##

2
†#

2
†#   (237) 

The spatial inversion (or mirroring operator M) which inverts all of the relative velocity 

vectors, is then (within an arbitrary phase factor): 

     rrr  #
2 MM  (238) 

This operator inverts observables computed from 1 , 2 , and 3  independently of the change in 

sign of r.  

The Dirac equation for a particle in electromagnetic potentials is: 

  0iii
~

131   i
i

i
i

t eec A  (239) 

When applied to this equation, the parity operator inverts 3 , 1 , i
~

, and i  (the matrices are 

inverted because they anti-commute with 2 ). Denoting spatially inverted quantities with 

subscript M, the spatially inverted Dirac equation is: 

   0iii
~

1
##

31  MMiM
i

MMMi
i

t eec  A  (240) 

We assume M . The transformed equation has the same form as the original Dirac 

equation except for the sign of the vector potential term. This sign change is necessary for 

consistency with gauge transformations. The gauge transformation 

 





iexp 





ii

t

eAAe

ee

 (241) 

 

suggests that the scalar potential may be regarded as a time derivative and the vector potential 

may be regarded as a spatial derivative. Taking gt  and g GA  would leave the 

form of the equation invariant: 

   0iii
~

1
##

31  MMMMMtMMi
i

t gegec  Gσ  (242) 
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The scalar and vector potentials must have opposite spatial inversion eigenvalues. We will 

assume that: 

    

    rAArA

rr





eeeM

eeeM

MM

MM

iii

iii

#

#

 (243) 

The transformed Dirac equation is then: 

     0iii
~

131  MiiMMMi
i

t Aeec  rr  

With these transformation properties, we will show that the new parity operator is consistent 

with an exchange of matter and anti-matter. 

3.8.1.3. Eigenfunctions and eigenvalues 

Next we consider the effect of the new parity operator on the eigenvalue equation. For 

simplicity we assume the vector potential A to be zero. Assuming temporal dependence 

 Etiexp  , the eigenvalue equation is: 

   31 i
~

ii  σceE  (244) 

The operator σ  can be factored: 

   






 











rr
rrrr

Lσ
r

σ
σ i  (245) 

The two-component angular solutions of the eigenvalue equations 
  


1, lmlLσ  and 

    


12, lmlLσ  are well known.
(2)

 These two angular solutions are related by 

     mlmlr ,,  and yield opposite eigenvalues under coordinate inversion ( rr  ). Only the 

true scalar imaginary i  can appear within these functions. 

Denote two wave functions as: 

 
 

 
























ml

ml

F

G

r
,

,i
~

1
     or     

 

 
























ml

ml

G

F

r
,

,i
~

1
  (246) 

Each of these is an eigenfunction of the conventional parity operator, but they are exchanged by 

the new spatial inversion operator: 
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           

           rrr

rrr













1#4

#4

l

l

M

M
 (247) 

Using    in the (original) Dirac equation yields the coupled radial equations: 

 

  0

0





















G
r

cFeE

F
r

cGeE

r

r





 (248) 

   yields similar coupled equations with opposite sign of E and e, as expected for exchange 

of matter and anti-matter.  The energy levels for    in a negative Coulomb potential are 

therefore equal and opposite to the energy levels of    in a positive Coulomb potential. The 

need for this result was the reason for assuming that the parity operator locally inverts the scalar 

potential term  rei . 

3.8.1.4. Weak interactions 

The projection operator for left-handed spinor components is: 

  1 IL  (249) 

The unit matrix I  is a scalar and 1  is a pseudoscalar. However, the projection operator does not 

violate mirror symmetry so long as the reflected counterpart    MIR 1  is as physically 

plausible as the original projected wave function. Since the new spatial inversion operator 

exchanges matter and antimatter, all of the elementary particles involved in the weak interaction 

do in fact have spatially reflected counterparts in nature (electrons and positrons, left-handed 

neutrinos and right-handed anti-neutrinos, etc.). The mathematical form of the weak vertex factor 

is entirely consistent with mirror symmetry. 

3.8.1.5. Comparison with conventional PC 

The conventional PC operator is: 

     rrr  *
2

5*20 ii PC  (250) 

This differs from our spatial inversion operator by an arbitrary phase factor, the factor of 

2
0 and conjugation of the scalar imaginary (denoted by *#  ). The factor 2  is, within a 
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phase factor, simply a rotation by  about the x2 axis:  2iexpi 22   . Complex 

conjugation of the scalar imaginary inverts the spin component S2: 

     22
†*

2
†**

2
†*

2
*†

2 SPCS    (251) 

Therefore the net effect of *#2   is to invert the spin. 

The additional factor of 0  inverts velocity by rotation of the velocity-representation 

matrices. Applied to the matter and anti-matter eigenfunctions, it is equivalent to inverting the 

spatial arguments in the wave functions. Therefore the conventional PC operator, though it 

exchanges matter and anti-matter, differs significantly from the new spatial inversion operator M. 

3.8.2. Time reversal 

Physically, time reversal must invert the time derivative operator, velocity, and spin 

independently of the change in argument. One of the electromagnetic potentials must also be 

inverted. Velocity and spin are both inverted by the transformation: 

     tttB B  *#2  (252) 

The velocity-representation space  045 ,,   is unaffected by this transformation. By 

contrast, the conventional time reversal operator    ttT  *2i   inverts 4  but not other 

matrices of velocity-representation space. This suggests that the conventional time reversal 

operator is also incorrect. However, unlike the conventional parity transformation, there is no 

empirical evidence to validate this claim. 

Applied to the Dirac equation, the new time reversal operator yields: 

  
  0iii

~

iii
~

5*#*#05

505





BBiB
i

BBBi
i

t

i
i

i
i

t

Aeec

AeecB




 (253) 

We recover the original form of the Dirac equation if B  (i.e.   is an eigenvalue of 

an operator which transforms like a time derivative) and the potentials are interpreted as 

derivatives.  

We assume the potentials to transform as: 

    

   teeeB

teeteB

BB

BB





AAA iii

iii

*#

*#

 (254) 
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According to our interpretation of matter and anti-matter as mirror-images, time reversal 

does not exchange the two. 

3.8.3. Combined Transformations 

The combined MB transformation is: 

     tttMB  ,i,, *2*
2

4 rrr   (255) 

This is closely related to the conventional charge conjugation transformation C : 

     tttC ,,, *2*
2

4 rrr    (256) 

The conventional charge conjugation operator inverts the spin and velocity in place, without 

inverting the spatial or temporal coordinates. In terms of dynamical behavior, charge conjugation 

has the same effect as inverting the sign of the electromagnetic potentials in the Dirac equation. 

The conventional PT transformation is: 

   ttPT  ,, *
2

0 rr   (257) 

This differs from the new MB transformation by the factor 5 , which rotates the velocity-

representation space by 180 degrees.  

The conventional PCT transformation is: 

   ttPCT  ,, 5 rr   (258) 

 This transformation is the conventional theoretical relation between matter and 

antimatter. Compared with the MB operator, it differs only by charge conjugation (which has 

similar effect to restoring the potentials inverted by MB) and by the factor 
5 . 

 

3.9. Mathematical and Physical Properties of Spinors 

“…our present thinking about quantum mechanics is infested with 

the deepest misconceptions.” 

Stephen Gull, Anthony Lasenby, and Chris Doran [1993] 
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3.9.1. Spinors and Inner Products 

An understanding of some mathematical properties of spinors will be useful. Expressions for 

physical quantities (e.g. Q) are computed from operators (e.g. Q) in the form: 

         








†††††

2

1

2

1
Q  QQQQ  (259) 

Since the adjoint of a scalar is its complex conjugate, the physical quantity Q is real-valued. 

When integrated over space, such expressions take the form of an inner product: 

        rdfggffggf 3††

2

1
,,

2

1
Q  (260) 

The quantity <Q> is the integrated value (or expectation value in QM). 

A complete space of functions with an inner product satisfying some simple properties (e.g. 

linearity) is called a „Hilbert space‟. It suffices for our purposes to say that the inner product 

defined above satisfies all of the necessary criteria. 

[Note: the inner product is often defined using only one of the terms in the integrand above 

(without the factor of one-half). With this definition local densities may be complex even though 

the integral is real.] 

The inner product between two spinor functions is analogous to the dot product between 

two vectors or the correlation between two scalar functions. The inner product of a spinor 

function with itself is its positive-definite magnitude: 

  0, 3†2
 rdfffff  (261) 

In terms of components this is: 

  0, 3*   rdffff


  (262) 

The local projection  rp  of one function (r) onto another function (r) is defined 

as: 

 
   

   
 r

rr

rr
r 




 †

† 
p  (263) 

The global projection  rP  of one function   onto another function  is defined as: 
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 
 

 rr 



 2

,
P  (264) 

The term „projection‟ by itself generally refers to the global projection in the literature. For 

comparison, the projection of a vector a onto a vector b is the component of a that is parallel 

with b: 

 bbab
b

ba
ab

ˆˆ
2




P  (265) 

If an operator has Hermitian (H
†
=H) and anti-Hermitian (A

†
=−A) parts, then only the Hermitian 

part contributes to the physical value: 

           HAHAHAHAH ††††††

2

1

2

1
Q   

From this we can conclude that the condition for a real-valued inner product is that the operator 

is Hermitian ( QQ † ). For example consider the spatial derivative jj x : 

    rdffff jj

3†,  (266) 

The adjoint is: 

     rdffff jj

3††
,  (267) 

Integration by parts yields: 

     ffrdffdSrdffrdff j

x

xjjj
j

j

 
†3†3†3† 2

1

 (268) 

We assume that the spinor functions fall to zero prior to reaching the boundary of 

integration (i.e. that the boundary is sufficiently far that there is no contribution to the volume 

integral outside the boundary). This assumption allows us to discard the boundary term, but 

limits our ability to give physical interpretation to the local functions. Assuming the boundary 

contribution to be zero, we have: 

   ffff jj  ,,
†

 (269) 

Hence the spatial derivative is an anti-Hermitian operator (minus sign rather than plus sign).  

Clearly this property holds for all components of the gradient, so we can write: 

   ffff  ,,
†

 (270) 
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Which leads to the rather obvious expression for the integrated value: 

  03†3†3††
   rdffrdffrdffff  

This relationship in operator form is: 

     ††††
fff  (271) 

Note that the form of the gradient operator is not changed by the adjoint operation 

( †
). The sign change comes from transposing the operator from the left to the right side 

(via integration by parts). Note that: 

     ffffff  †††  (272) 

This expression is obviously not zero in general, but its volume integral is zero as long as the 

function f falls off sufficiently rapidly near the integration boundaries. 

It is simple to construct a Hermitian operator from the gradient operator by multiplying it 

with the unit imaginary: 

   ffff  i,i,
†  (273) 

3.9.2. Matrix Algebra 

Before proceeding further, it will be useful to tabulate some relationships between matrices. 










































































1000

0100

0010

0001

000

000

000

000

0100

1000

0001

0010

zyx

i

i

i

i

  










































































1000

0100

0010

0001

,

00i0

000i

i000

0i00

,

0010

0001

1000

0100

321   (274) 

In the Dirac representation of quantum mechanics these matrices represent  5
, i 0 5

, and  0
, 

respectively. 

In spherical coordinates the sigma matrices are: 
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
























































































000

000

000

000

sincos00

cossin00

00sincos

00cossin

cossin00

sincos00

00cossin

00sincos



















































i

i

i

i

i

i

i

i

i

i

i

i

r

ie

ie

ie

ie

e

e

e

e

e

e

e

e

 (275) 

The operator σ  therefore yields: 

   
   

   
   

   
   

   
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In cylindrical coordinates ( zr ,, ) the matrices are: 
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3.9.3. Wave Properties of Matter 

We have shown that classical wave theory can describe Fermion dynamics.  This result lends 

support to recent efforts to revive the classical aether (or ether) as a medium of propagation of 

matter waves. Duffy (2006) has surveyed modern aether theory. 

The model of vacuum as an ideal elastic solid was quite successful in explaining classical 

properties of light in the 19
th

 century (see e.g. Whittaker (1951)). Quantum effects are only 

apparent in interactions with matter, which might be interpretable as classical soliton waves. At 

present there appears to be no satisfactory description of rotational waves in an ideal elastic 

medium. Kleinert (1989) attempted to include rotations in the elastic energy but was compelled 

to introduce new elastic constants dependent on an arbitrary scale length. Close (2002) showed 

that torsion waves (with rotation axis parallel to wave velocity) can be described by a Dirac 

equation. In this book we use a wave equation with convection terms as the classical basis for the 

quantum mechanical momentum and spin operators. Schmelzer (2009) recently demonstrated 

that a cellular lattice model can yield the same group structure as the Standard Model. This 

model is astonishingly similar to the rotating elastic cell model which Maxwell used to derive the 

equations of electromagnetism (though the rolling particles bordering Maxwell‟s cells were 

replaced by an unspecified material between the lattice cells). 

Many physical properties of matter can be derived from a wave model of matter. The 

Uncertainty Principle applies to all classical waves and represents a basic property of Fourier 

transformations. Lorentz invariance is also a property of waves, and Special Relativity is 

therefore a consequence of any wave theory of matter. For example, the relativistic phenomenon 

of time dilation is simply explained by the fact that stationary soliton waves execute periodic 
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orbits (e.g. circles) whereas moving solitons execute orbits which have longer wave paths in each 

cycle (e.g. spiral or cycloidal). Hence a moving clock which counts soliton wave orbits ticks 

faster than a similar moving clock. Absolute motion with respect to the aether would not be 

detectable because without prior knowledge of absolute motion it is unknown whether a signal is 

Doppler shifted at the source or the receiver, or both.  

There has been considerable interest in describing elementary particles as soliton (or particle-

like) wave solutions of a nonlinear Dirac equation. See Rañada (1983) for a short review. More 

recent works include Fushchych and Zhdanov (1997), Gu (1998), Bohun and Cooperstock 

(1999), and Maccari (2006). These efforts all suffer from arbitrariness in the choice of 

nonlinearity. Identification of the Dirac equation with a second-order classical wave equation 

provides a simple means for interpreting, literally or analogously, any non-linear terms.   

The Klein-Gordon (or relativistic Schrödinger) operator can be factored into a product of two 

Dirac operators acting on the wave polarization (or amplitude) a: 

    aa MMMc iitiitt ii 00
2222  

 (277) 

where the commutation relations are: 
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 (278) 

The quantities  and unit imaginary (i) have traditionally been regarded as matrices, but they 

can also be interpreted geometrically using multivariate vectors [Hestenes 1967, 1973, 1990]. 

The wave polarization a is a classical 3-vector in Galilean space-time. The Minkowski metric of 

relativity is introduced through the operators.  

If we define a wave function: 

 aMiit i0  
 (279) 

then the resultant first-order Dirac equation is equivalent to the original Klein-Gordon equation: 

  0i0  Miit 
 (280) 

In the above case the two Dirac operators have different sign for the mass term. Rowlands [1998, 

2005, 2006] and Rowlands and Cullerne [2000] used a combination of multivariate 4-vectors and 

quaternions to write the Dirac equation in a nilpotent form in which the two successive Dirac 

operations are identical. This formulation yields an elegant classification of particle states within 

the Standard Model.  
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Standard solutions of the Klein-Gordon equation yield different energy eigenvalues than the 

Dirac equation (see e.g. Schiff [1968]). This result is quite peculiar given the fact that each 

component of the Dirac wave function actually satisfies the Klein-Gordon equation! Factoring 

the Klein-Gordon equation cannot change its eigenvalues. The problem is that in the usual 

analysis of Klein-Gordon, the angular functions are chosen to be eigenfunctions of the squared 

orbital angular momentum L
2
, whereas in the analysis of the Dirac equation the angular functions 

are eigenvalues of the squared total angular momentum J
 2

. The difference is not in the 

equations, but in the choice of angular eigenfunctions. The usual analysis of the Klein-Gordon 

equation neglects the spin contribution from rotation of wave velocity. These solutions represent 

bosons with zero spin. Solutions obtained by using angular eigenvalues obtained from Dirac 

theory represent fermions with spin one-half. 

In the next chapter we shall see that a scalar gravitational field and its effect on the space-time 

metric may be interpreted as a spatially varying light speed. See Whittaker (1954) for the 

historical development of this idea which originates with Einstein (1911, 1912) and has also been 

investigated more recently (de Felice (1971), Evans et al (2001)). This interpretation is consistent 

with general relativity, which also predicts a variation of light speed proportional to the 

gravitational potential (Einstein 1956). In an elastic solid aether, compression or variations in 

elasticity imply variable wave speed and hence provide a reasonable physical model for basic 

gravitational effects.  

3.10. Summary 

Even if you are a minority of one, the truth is the truth. 

 Mohandas Gandhi 

In this chapter we interpret the Dirac equation as a classical second-order wave equation for 

rotational waves in an elastic medium. The first order spatial and temporal derivatives are 

represented by a bispinor wave function. Half-integer spin is attributable to the co-existence of 

waves traveling in opposite directions along the gradient axis. The wave function can be factored 

into constant matrix, a single amplitude, a three-dimensional Lorentz velocity boost, rotation, 

and an arbitrary change of representation. Wave interference yields both the Pauli exclusion 

principle and the Lorenz force. The electromagnetic potentials represent wave interference. 

Interpreting the classical bispinor equation as describing an electron, it is found that the mass is 

associated with radially inward acceleration of the wave, suggestive of a soliton. The classical 

theory is consistent with parity conservation. Hence it appears that classical wave theory 

constitutes an intelligible basis for the physical attributes of matter.  

3.11. Suggested Exercises: 

1. Verify the correspondence between bispinor and scalar equations in Table I. 

2. A Hermitian matrix has the property  † . Prove that  †  is real for any Hermitian 

matrix .  
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3. Use Taylor series expansion to verify that a spin 1/2 rotation operator can be written as an 

exponential:       2sinˆi2cos2iexp  σσ    

4. Derive the velocity eigenfunctions a which satisfy the equation   vσ 1c . 

5. Transform the spin matrices into spherical coordinates. 

6. Verify the general formula for relativistic addition of velocities. 

7. Show that the angular momentum is constant (commutes with Hamiltonian): 

   0
2

1
i†† 
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





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