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Chapter 4. Wave Refraction and Gravity 

 

 “It is only the relation of the magnitude to the instrument that 

we measure, and if this relation is altered, we have no means of 

knowing whether it is the magnitude or the instrument that has 

changed.” 

Henri Poincaré, Science et Méthode 1897 

 

4.1. Introduction 

 

"Gravity is probably due to a change in the structure of the aether, 

produced by the presence of matter.” 

George Francis FitzGerald 1894

 

Isaac Newton [Figure 4.1] published his theory of gravity in Principia in 1687. Newton 

realized that a force proportional to the inverse square of the distance between two masses would 

yield elliptical planetary orbits with the sun at one focus of the ellipse. He conjectured that the 

gravitational force might represent a tendency of matter to move from denser to rarer regions of 

the aether. Tests of Newton‟s theory were sometimes difficult and required planetary 

observational data accumulated over long periods of time. For example, in 1784 Pierre-Simon 

Laplace [Figure 4.2] determined that the apparently secular (non-periodic) motions of Jupiter and 

Saturn were actually periodic with a period of 929 years, the frequency corresponding to the 

difference between five periods of Saturn and two periods of Jupiter. Although Newton‟s law 

eventually succeeded in explaining most astronomical observations, a few observations resisted 

interpretation. This included the rate of rotation of the elliptical axes of Mercury.  

Lóránd (or Roland) Eötvös  [1891] [Figure 4.3] reported experimental results indicating 

that inertial mass and gravitational mass are exactly equal. Albert Einstein [1907]  [Figure 4.4] 

then proposed the Principle of Equivalence between an accelerating reference frame and a 

gravitational field. He also deduced that the speed of light must vary in a gravitational field 

[Einstein 1911, 1912]. 

Harry Bateman [1909] observed that the condition for propagation of light: 

022222  dzdydxdtc  (1) 

does not hold in a gravitational field. Instead a condition of the form: 

02  


 dxdxgds  (2) 

describes the propagation of light in a gravitational field which is characterized by the 

coefficients g. Time is denoted by x0 and the coefficient g00 is equal and opposite to the spatial 

coefficients gii in the absence of gravity. 

Albert Einstein and Marcel Grossmann [1913] proposed that particle motion in a 

gravitational field is described as a geodesic in space-time determined by the variational 

equation: 



© Copyright 2003-2009 Robert A. Close 

0 ds  (3) 

with ds defined as above. Combined with an equation relating the metric coefficients with the 

energy tensor of matter, this idea formed the General Theory of Relativity [Einstein 1915a,b,c]. 

David Hilbert [1915] [Figure 4.5] showed that the entire theory could be formulated using a 

variational principle. Karl Schwarzschild [1916] found exact solutions for a point mass. 

 Many predictions of the General Theory have been successfully validated by 

experimental observations. In addition to the usual attraction between massive objects, the theory 

also accurately predicts deflection of light rays around massive objects, deviations from simple 

elliptical planetary orbits, and non-Euclidean curvature of space. The theory also predicts the 

existence of black holes: regions where gravity is so strong that light cannot escape. There is 

now very strong astronomical evidence of black holes, including one at the center of our own 

galaxy.  

 In this chapter we will compare wave refraction with General Relativity. In particular, we 

will use the analogy of compression of a wave-carrying medium, such as an elastic solid. Other 

investigators have attempted to model the vacuum as an elastic solid. Two recent efforts are 

those of Hatch [1992] and Karlsen [1998]. Gravity has been interpreted by many as refraction 

due to a variable index of refraction of space [Alsing et al. 2001, Anonymous 2002, Colsman 

1997, Evans et al. 2001, de Felice 1971, Peters 1974]. Although many physicists believe that 

gravity should have a quantum mechanical description, the classical description adequately 

explains a wide range of gravitational phenomena.  

 

4.2. Wave propagation in a non-uniform medium 

 

"It is worth noting that, strictly speaking, there cannot be any point 

particles in general relativity. They have to be much larger than 

their Schwarzchild radius ..." 

 Hagen Kleinert [1989] 

 

Since elastic waves yield bispinor equations similar to the equations of quantum 

mechanics, it is natural to question whether elastic waves can produce gravity. A simple 

mechanism is that twisting of the medium can generate tension which causes the medium to 

compress. This effect can be easily observed using a rubber band. Twisting the rubber band 

stretches it, thereby generating tension which pulls inward from the ends.  The square of the 

wave speed is inversely proportional to density and therefore decreases as one approaches the 

region of increased density. Since waves refract in the direction of decreased wave speed there is 

a mutual attraction between rotational waves (see Figure []). 
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Figure: Waves refract toward the direction of slower wave speed. The rays are perpendicular to 

surfaces of constant phase. 

4.2.1. Dispersion Relation and Metric Factors 

 

Now consider the propagation of elastic waves in an ideal elastic medium with non-uniform 

density.  For soliton waves the dispersion relation can be written as: 

2222 Mkc   (4) 

The dispersion relation relates the various sources of phase shifts in the wave (time derivatives 

and spatial derivatives). The mass term represents the contribution of convection and rotation to 

the frequency, whereas ck represents the contribution of restoring forces or torques in the 

medium, resulting in wave propagation at the reduced frequency   2122 Mck   . In 

terms of the reduced frequency the dispersion relation appears to represent ordinary wave 

propagation: 

 

222 kc  (5) 

The condition of constant phase is: 

0 lk ddt  (6) 

This equation describes wave propagation at speed c (since ckdtdl   ) with dl parallel to 

k, as distinct from convection and rotation. In other words, a disturbance evolves over time due 

to convection and rotation of the medium (resulting in mass) and wave propagation 

(momentum). The wave propagation occurs with the characteristic wave speed as described 

above, but convection and rotation increase the frequency, thereby raising the phase velocity and 

reducing the group velocity. 

It is customary to assume positive frequency, in which case the relative sign of the wave vector 

may need to be altered: 

lk ddt   (7) 

The phase velocity ( cv  ) is: 
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 
c

Mkdt

dl
v

l
2122 






 (8) 

 

The group velocity ( cvG  ) is: 

 
c

M
c

k

dk

d
vG








2122

2 
  (9) 

Using the propagation condition, we can define a „phase separation‟ d for arbitrary space-time 

paths which measures the deviation from the propagation condition ( kdldt  ): 
22222 dlkdtd    

This differential separation should be zero for the true propagation path. The integrated phase 

separation is: 

   2

1
2222 dlkdtd   (10) 

If k and   are variable, then neighboring space-time paths must still yield equal phase shifts in 

order to maintain the transverse orientation of the wave. This condition yields the equation of a 

geodesic: 

  02

1
2222   dlkdtd   (11) 

Take reference values of 0 and 0k  with 000 ck  . Multiplication of the geodesic equation by 

01 k  to obtain 0kdds   yields the geodesic equation in terms of the ordinary „separation‟ ds: 
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This expression is equivalent to Einstein's formulation of general relativity [Einstein 1956 p. 78] 

if we assume a diagonal metric tensor with: 

2
0

2

2
0

2

k

k
ggg

g

zzyyxx

tt
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
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 (13) 

So that the geodesic equation is: 
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Hence Einstein's metric factors can be interpreted quite simply as the normalized values 

of the squared wave number and (reduced) frequency. Einstein's formulation is a bit more 

general in that it allows for non-isotropic metrics, and the above formula can be easily 

generalized to allow for independent variations of xx kk 0 , yy kk 0 , and zz kk 0  (with 

appropriate dispersion relation). It is not clear that this generalization is important in nature, so it 

is not pursued here. 

For simplicity, we rewrite the geodesic equation as: 

021
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The Euler-Lagrange equations are: 
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Since the metric factors do not depend explicitly on the parameter , and 1
 gg : 
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For velocities small compared with the speed of light tc0  and 1ddt : 
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2

2
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 (18) 

The right hand side may be interpreted as gravitational acceleration and is equivalent to 

Einstein‟s expression [Einstein 1956 p.89] except for a different sign convention (Einstein uses 

imaginary time, thereby changing the sign of the temporal metric component).  

 

4.2.2. Relation between metric components 

 

Consider the variations of  and k for a refracting wave. For simplicity, consider the one 

dimensional problem of an elastic tube of radius R with varying density along its length. This 

tube could be an infinitesimally small region of a larger elastic solid. Consider a torsion wave 

with 1-D spatial profile of rotation angle  z vs. z. Consider such a wave element with range of 

angles dz monotonically increasing over a distance dz.  
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Figure: Local torsion wave propagating along z-axis. 

 

For a one-dimensional inertial moment density 22RI z   and elasticity coefficient 

22RK z   the angular momentum dL and energy d of a local region are: 
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Each of these quantities must be conserved (convective time derivative equal to zero) as the 

wave propagates through the spatially-varying medium. Writing the expression for energy in 

terms of the constant angular momentum yields: 
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 (20) 

Energy conservation therefore requires that changes in wave characteristics be related by: 
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Substituting the expressions for angular momentum zzcdIdL   and initial wave speed 

2cIK z   yields: 
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In the Fourier domain the above expression becomes: 

kc  (23) 

Since the local speed of light is kc   (there is no mass in this one-dimensional case) we can 

write: 
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For small changes we can use the approximation    22 2
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Inclusion of mass merely changes  to the reduced frequency . In terms of metric components: 

zzyyxxtt gggg   

This is in agreement with Einstein‟s result [Einstein 1956 p.89] except for the temporal sign 

convention. It follows from the fact that the Einstein tensor has zero divergence. 

The change in wave speed is: 
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This leads to the result: 
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 Using this result in the expression for gravitational acceleration yields: 
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Hence the gravitational acceleration is directly proportional to the gradient of the speed of light. 

The gravitational potential is: 
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  (29) 

where 2c is the difference in the square of the speed of light from its unperturbed value. This 

expression for the gravitational potential is consistent with General Relativity  [Einstein 1956 p. 

84-93]. One may always offset this potential by a constant to make the values positive. 

4.3. The gravitational potential 

 

“The most incomprehensible thing about the universe is that it is 

comprehensible.” 

Albert Einstein 

 

The next question is whether compression yields the correct form of the gravitational potential. 

The equation of compression waves in an elastic solid is: 
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 22

2

2





c

t
 (30) 

Assuming the density to be slowly varying allows the time derivatives to be neglected: 

 02    (31) 

Many large massive objects are nearly spherical in shape, implying only a radial dependence: 
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which has the solution: 
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where 0 and  are constants. The speed of transverse waves is given by: 
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where  is the shear modulus. The fractional variation of 2c  is given by: 
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Hence the change of wave speed differs from the (1/r) dependence of the classical gravitational 

potential by the addition of higher order terms. However, even near the edge of the sun the 

variation is only 
62

0
2 10cc , so the second order difference is extremely small. 

 The change in the speed of light is evidently caused by the presence of mass (M) and falls 

off inversely proportional to distance (r) away from a spherically symmetrical distribution of 

mass (except for very small distances). The expression for the Newtonian gravitational potential 

is: 

 

 
r

GM
rU   (36) 

Where 21311 skgm10673.6 G  is the gravitational constant. Notice that the gravitational 

potential has units of velocity squared. 

4.4. Consequences of gravity 

4.4.1. Newtonian gravity 

Given the form of the gravitational potential and the expression for acceleration in terms of 

variations in the speed of light, we can express the gravitational acceleration of an object in 

terms of the potential: 
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The acceleration is simply equal to the gradient of the gravitational potential, as in Newtonian 

gravity. 

4.4.2. Bending of light 

For propagation of light waves, we can no longer neglect changes in position relative to changes 

in time. Take the velocity in the x3 direction to be c and the gradient in the speed of light to be 

along x1 as in Figure [].  

 

 
Figure: Apparent position of a star and the path of a light ray past the sun. 

 

The acceleration is then: 

111

33
11

2

1

00
11

2

2
1

2

2
2

1

2

1

x

U

x

c
c

x

g
gc

x

g
gc

dt

xd



















  (38) 

This is twice the Newtonian acceleration rate. 

Integrating over a path with a 1/r gravitational potential yields: 
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The gravitational coefficient for the sun is: 
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This yields a perpendicular velocity of: 
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Just outside the radius of the sun, x1=7.0x10^8 m: 
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The angle of deflection is: 
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This deflection was first observed during a 1919 solar eclipse [Dyson, et al 1920]. More recent 

measurements use radio waves, which do not require waiting for eclipses [Lebach et al. 1995]. 

 Since the light slows down near the sun, there is also a delay in the signal as compared 

with propagation in free space. This delay has also been measured and is in agreement with 

experiment [Shapiro et al. 1977, Bertotti et al. 2003]. 

4.4.3. Curvature of space 

One supposedly bizarre prediction of general relativity is that “space is curved”. What this means 

is that measurements of geometrical shapes are not consistent with Euclidean geometry. For 

example, suppose we measure the circumference of a circle of radius 1R  by shining light past a 

series of mirrors orbiting in space as shown in Figure []. For simplicity, we will treat the earth as 

a point-like source of gravity.  

 

 
Figure: Distance measurements in a gravitational field. 
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We take the speed of light to be an approximation of the form derived above: 
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Neglecting any delay during the reflection process, the light propagates with constant speed 
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over a distance 12 R , so that the propagation time is: 
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Since one cannot directly determine the absolute speed of light, the measured circumference 
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The circumference of a second circle with radius may be measured similarly. To avoid effects of 

different clock speeds, the transit time can be measured using the clock at 1R by sending signals 

when the light wave is transmitted and when it is received by the satellite at 2R . The measured 

circumference of the circle at 2R  is: 
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The time of flight of light between the two circles is: 
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This means that the measured difference in radii is: 
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According to Euclidean geometry, the two circumferences should be related by:  212 LL . 

Instead, we have: 
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Compared with Euclidean geometry, the measured circumference is smaller than expected for 

the measured change of diameter. This is the meaning of  “curved space”. However, the apparent 

curvature is actually attributable to the variation in the speed of light, which distorts the 

measurement of distances. 

4.4.4. Black Holes 

We saw above that light is deflected when it passes by a massive object such as the sun. If the 

gradient in the speed of light is large enough, then the light can become trapped. An object 

whose gravitational field is strong enough to trap light is called a “black hole”.   

 

For the geometry described above in Figure [] with variable 1x  replaced by r at the point of 

closest approach, the centripetal acceleration condition for trapping light is: 
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In terms of the gravitational potential, this condition is: 
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In terms of the mass of the black hole, for a this is: 
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Solving for r: 
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This radius is called the “Schwarzchild radius”.  Any light which reaches this point from the 

outside will be trapped. 

 Black holes were once considered an absurdity, but there is now a wealth of evidence for 

their existence in the universe. 

 

4.5. Summary 

 

“The bigger they are the harder they fall.”  

Anonymous  

 

The above derivation demonstrates that gravity can be interpreted as wave refraction in a 

non-uniform medium. Unlike quantum theories in which gravity waves are assigned a spin of 2, 

the present model utilizes compression which is a scalar. There is absolutely no physical 

evidence indicating that gravity should be quantized.  

Compression waves in a solid can in principle propagate at a speed equal or greater than the 

speed of transverse (or torsion) waves. Therefore it is quite possible that gravity waves propagate 

at a speed greater than c. If that is the case then the measured speed would also be direction 

dependent due to the earth's motion relative to the vacuum. 

In summary, gravity may be interpreted as a description of wave refraction due to decreased 

velocity of light in the vicinity of matter. If the aether is taken to be an elastic solid, then the 

variation in light speed might be attributed to compression. The spatial metric components are 

interpreted as the ratio between the squared wave numbers at different positions. The temporal 

metric component is interpreted similarly as the ratio between squared frequencies at different 

positions. Conservation of angular momentum and energy yield the correct relation between 

spatial and temporal metric components. The derived form of the gravitational potential falls off 

as 1/r for large distances but also includes higher-order terms. 

Gravitation deflects light in accordance with the laws of wave refraction. It also makes space 

appear to be non-Euclidean. Black holes bend light rays so strongly that the light becomes 

trapped. All of these effects are easily understood using the classical model of an elastic solid 

aether. 
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Exercises 

 

1.  Compute the expected delay of light propagating near the sun relative to propagation in 

free space. 

2. Compute the Schwarzchild radius of an object with one solar mass.  

3. By what factor would the solar density have to be increased to make the solar radius 

equal to the Schwarzchild radius? 

4. For what mass would the Schwarzchild radius be 1Ǻ?  (1Ǻ=10
10 

m).  

5. Compute the impact parameter (distance of closest approach for a straight line) for which 

light will be trapped in a black hole. This distance could be regarded as the measured, as 

opposed to absolute, Schwarzchild radius. 
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