Chapter 5. Wave Refraction and Gravity

The most incomprehensible thing about the universe is that it is comprehensible.

Albert Einstein
5.1. Introduction
"It is worth noting that, strictly speaking, there cannot be any point particles in general relativity, They have to be much larger than their Schwarzchild radius ..."

 Hagen Kleinert, Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989), Vol II, Part I, p. 1387.
This synopsis is based on Whitakker [1951]. Isaac Newton published his theory of gravity in Pincipia in 1687. Newton realized that a force proportional to the inverse square of the distance between two masses would yield elliptical planetary orbits with the sun at one focus of the ellipse. He conjectured that the gravitational force might represent  a tendency of matter to move from denser to rarer regions of the aether. Tests of Newton’s theory were sometimes difficult and required planetary observational data accumulated over long periods of time. For example, in 1784 Laplace determined that the apparently secular (non-periodic) motions of Jupiter and Saturn were actually periodic with a period of 929 years, the frequency corresponding to the difference between five periods of Saturn and two periods of Jupiter. Although Newton’s law eventually succeeded in explaining most astronomical observations, a few observations resisted interpretation. These included the rates of rotation of the elliptical axes of Mercury and Venus. In the twentieth century relativity theory led scientists to believe that the gravitational potential must be propagated at the speed of light. However this development was not sufficient to explain the anomalies.

R. v. Eötvös [1891] reported experimental results indicating that inertial mass and gravitational mass are exactly equal. Einstein  [1911] then proposed the Principle of Equivalence between an accelerating reference frame and a gravitational field. Max Abraham [1911] and Albert Einstein [1912] soon published papers proposing that the gravitational field represents a gradient in the speed of light.
Harry Bateman [1909] observed that the condition for propagation of light:
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does not hold in a gravitational field. Instead a condition of the form:
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describes the propagation of light in a gravitational field which is characterized by the coefficients g. Time is denoted by x0 and the coefficient g00 is equal and opposite to the spatial coefficients gii in the absence of gravity.
Albert Einstein and Marcel Grossmann [1913] proposed that particle motion in a gravitational field is described as a geodesic in space-time determined by the variational equation:
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with ds defined as above. Combined with an equation relating the metric coefficients with the energy tensor of matter, this formed the General Theory of Relativity [Einstein 1915]. David Hilbert [1915] showed that the entire theory could be formulated using a variational principle.

In this chapter we will show that refraction of waves in an elastic solid with variable density has a description quite similar to General Relativity. Other investigators have attempted to model the vacuum as an elastic solid. Two recent efforts are those of Hatch [1992] and Karlsen [1998]. Gravity has also previously been interpreted as refraction due to a variable index of refraction of space [Alsing et al. 2001, Anonymous 2002, Colsman 1997, Evans et al. 2001, de Felice1971, Peters 1974]. Although many physicists believe that gravity should have a quantum mechanical description, the classical description adequately explains a wide range of gravitational phenomena. 
5.2. Wave propagation in a non-uniform medium

"It is now generally accepted that spacetime should carry a nonvanishing torsion at least locally at those points which are occupied by spinning elementary particles… The precise equations of motion for the torsion field, on the other hand, are still a matter of speculation."

( Hagen Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific, Singapore, 1995), Second edition, p. 420.

Since elastic waves yield bispinor equations similar to the equations of quantum mechanics, it is natural to question whether elastic waves can produce gravity. In the previous chapter it was observed that rotations in an elastic medium give rise to compressional stresses which balance the centrifugal force. Hence there is a local expansion of the medium in the presence of rotations.  We now suppose that the region of rotation is localized so that the amount of excess density outside the rotation region decreases with distance.  The wave speed is inversely proportional to density and therefore decreases as one approaches the region of rotations. Since waves refract in the direction of decreased wave speed there is a mutual attraction between rotational waves.

5.2.1. Dispersion Relation and Metric Factors

Now consider the propagation of elastic waves in an ideal elastic medium with non-uniform density.  In Chapter 2 we saw that the dispersion relation can be written as:
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where m is the frequency associated with rotations (
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 is the wave number associated with linear motion. The dispersion relation relates the various sources of phase shifts in the wave (time derivatives and spatial derivatives). These phase shifts can be written explicitly to yield:
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where mdt is the phase shift associated with wave rotation (mass) and 
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 is the phase shift associated with linear displacement (momentum). For arbitrary space-time paths we can define a phase separation dwhich measures the difference from the propagation condition:
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This differential separation should be zero for the true propagation path. The integrated phase separation is:
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If 
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 and  are variable, then neighboring space-time paths must still yield equal phase shifts in order to maintain the transverse orientation of the wave. This condition yields the equation of a geodesic:
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Let (m and take initial values of (0 and 
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This expression is equivalent to Einstein's formulation of general relativity [Einstein 1956 p. 78] if we assume a diagonal metric tensor with:
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So that the geodesic equation is:


[image: image19.wmf]0

2

1

2

2

1

=

ò

ú

û

ù

ê

ë

é

å

=

ò

ú

û

ù

ê

ë

é

å

m

m

mm

mn

n

m

mn

d

d

dx

g

dx

dx

g


(39)

Hence Einstein's metric factors can be interpreted quite simply as the normalized values of the squared wave number and frequency. Einstein's formulation is a bit more general in that it allows for non-isotropic metrics, and the above formula can be easily generalized to allow for independent variations of 
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. It is not clear that this generalization is important in nature, so it is not pursued here.

For simplicity, we rewrite the geodesic equation as:
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The Euler-Lagrange equations are:
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Since the metric factors do not depend explicitly on the parameter :
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For velocities small compared with the speed of light 
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The right hand side may be interpreted as gravitational acceleration and is equivalent to Einstein’s expression [Einstein 1956 p.89]. 

5.2.2. Relation between metric components

A man may imagine things that are false, but he can only understand things that are true, for if the things be false, the apprehension of them is not understanding.—Isaac Newton
Consider the variations of  and k for a refracting wave. For simplicity, consider the one dimensional problem of an elastic tube of radius R with varying density along its length. This tube could be an infinitesimally small region of a larger elastic solid. Consider a torsion wave with 1-D spatial profile z vs. z. Although the wave might compress or expand along the z-axis, a small 'element' of the wave can always be identified by its range of angles. Consider such a wave element with range of angles dz monotonically increasing over a distance dz. For a one-dimensional inertial moment density 
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 the angular momentum dL and energy d of a local region are:
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(42)

Each of these quantities must be conserved (convective time derivative equal to zero) as the wave propagates through the spatially-varying medium. Writing the expression for energy in terms of the constant angular momentum yields:
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Note that dz is a constant since it defines the wave element in which we are interested. Energy conservation therefore requires that changes in wave characteristics be related by:
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In the Fourier domain the above expression becomes:


[image: image33.wmf]k

Kd

dL

z

D

Q

-

=

w

D


(45)

Substituting the expressions for angular momentum 
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Since 
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 (there is no mass in this one-dimensional case) we can write:
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For small changes we can use the approximation 
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Inclusion of mass as a rotational wave component merely changes  to 
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 and k to 
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. In terms of metric components:
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This is in agreement with Einstein’s result if we make time an imaginary variable and change the sign of the temporal metric component. It follows from the fact that the Einstein tensor has zero divergence.
The change in wave speed is:
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This leads to the result:
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Using this result in the expression for gravitational acceleration yields:
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Hence the gravitational acceleration is directly proportional to the gradient of the speed of light. The gravitational potential is:
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where c is the difference in the speed of light from its unperturbed value. This expression for the gravitational potential is consistent with General Relativity  [Einstein 1956 p. 84-93].
5.2.3. The gravitational potential

“What goes up must come down.” --Anonymous

The next question is whether compression yields the correct form of the gravitational potential. The equation of compression waves in an elastic solid is:
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Assuming the density to be slowly varying allows the time derivatives to be neglected:
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Many large massive objects are nearly spherical in shape, implying only a radial dependence:
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which has the solution:
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where 0 and  are constants. The speed of transverse waves is given by:
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where  is the shear modulus. The fractional variation of c is given by:
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Hence the change of wave speed differs from the (1/r) dependence of the classical gravitational potential by the addition of higher order terms. However, even near the edge of the sun the variation is only 
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, so the second order difference is extremely small.

5.2.4. Properties of gravity

“The bigger they are the harder they fall.” –Anonymous

The above derivation demonstrates that gravity can be interpreted as wave refraction in a non-uniform medium. Unlike quantum theories in which gravity waves are assigned a spin of 2, the present model utilizes compression which is a scalar. There is absolutely no physical evidence indicating that gravity should be quantized. 

Compression waves in a solid can in principle propagate at a speed equal or greater than the speed of transverse (or torsion) waves. Therefore it is quite possible that gravity waves propagate at a speed greater than c. If that is the case then the measured speed would also be direction dependent due to the earth's motion relative to the vacuum.

In summary, gravity can be interpreted as a description of wave refraction due to rotation-induced compression. The spatial metric components are interpreted as the ratio between the squared wave numbers at different positions. The temporal metric component is interpreted similarly as the ratio between squared frequencies at different positions. Conservation of angular momentum and energy yield the correct relation between spatial and temporal metric components. The derived form of the gravitational potential falls off as 1/r for large distances but also includes higher-order terms.
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