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Abstract: Quantum mechanical spin angular momentum density, unlike its orbital counterpart,

is independent of the choice of origin. A similar classical local angular momentum density may

be defined as the field whose curl is equal to twice the momentum density. Integration by parts

shows that this spin density yields the same total angular momentum and kinetic energy as

obtained using classical orbital angular momentum. We apply the definition of spin density to

a description of elastic waves. Using a simple wave interpretation of Dirac bispinors, we show

that Dirac’s equation of evolution for spin density is a special case of our more general equation.

Operators for elastic wave energy, momentum, and angular momentum are equivalent to those

of relativistic quantum mechanics.
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1 Introduction

The spin angular momentum of elementary particles is often puzzling to students because

it is not obviously related to an angular velocity. The particle velocity is taken to be the

de Broglie wave velocity, and since the waves propagate in vacuum there is presumably

nothing else to rotate. However, it is possible to interpret spin as a property of waves. [1]

And it is well known that elastic waves in solids have two types of momentum: that of

the medium and that of the wave (see e.g. Ref. [2]). Clearly there must also be two types

of angular momentum in an elastic solid: ”spin” associated with rotation of the medium,

and ”orbital” associated with rotation of the wave. However, spin angular momentum is

not normally considered to be a classical physics concept.

A standard part of undergraduate physics education is the definition of angular mo-

mentum density as r × p, where r is the radius vector and p = ρu is the momentum
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density (ρ = mass density, u = velocity). An obvious shortcoming of this definition is

that it depends on the arbitrary choice of origin of the coordinates. Hence the computed

angular momentum is not a local property of the physical system. Another limitation of

this definition is that for a given field of angular momentum density L = r× p, there is

no simple way to reconstruct the associated rotational momentum density. For example,

∇× (r× p) = êkεijkεjlm∂i(rlpm) = êk(δklδim − δilδkm)∂i(rlpm)

= êk∂i(rkpi − ripk) = êk(−2pk + rk∂ipi − ri∂ipk)

= −2p+ r∇ · p− r · ∇p . (1)

Even for incompressible momentum fields, the last term containing derivatives of p is

problematic.

Coordinate-independent descriptions of rotational dynamics can be traced back to the

nineteenth century. [3] MacCullagh modeled light as rotationally elastic shear waves in an

isotropic medium with shear modulus μ and displacements a(r, t), taking μ (∇× a)2 /2

as the energy density. [4] Requiring stationary variations of the associated Lagrangian

yields the equation for elastic shear waves with speed c =
√
μ/ρ :

ρ∂2t a = −μ∇× (∇× a) . (2)

In terms of rotations, the force density is proportional to the curl of a torque density,

which itself is proportional to the infinitesimal rotation angle (∇ × a)/2. Heaviside

similarly interpreted force density as minus the curl of torque density. [5] We wish to

clarify these definitions and extend them to arbitrarily large rotations.

It is not a simple matter to describe rotational motion in an elastic solid. The standard

treatment of elastic waves (e.g. Ref. [6]) assumes infinitesimal derivatives of displacement

∂iaj, and decomposes them into symmetric strain ((∂iaj + ∂jai)/2) and anti-symmetric

rotation ((∂iaj − ∂jai)/2) tensors. The strain tensor may be regarded as the deviation

(to first order) from a rigid rotation. Stress is assumed to be proportional to strain. For

density ρ and elastic constants λ and μ, the resultant equation of evolution of displacement

is

ρ∂2t a = (λ+ 2μ)∇(∇ · a)− μ∇× (∇× a) . (3)

The two terms on the right side of this equation describe compressional and shear

waves, respectively. The equation for shear waves is of course equivalent to MacCullagh’s

equation for light (Eq. 2).

Feynman analyzed the shear resulting from variations of rotation angle ϕz along an

axis (ẑ), obtaining the formula: [7]

∂2t ϕz = c2∂2zϕz . (4)

Equation (3) is valid only for infinitesimal displacements. Generalization to finite

rotations (rotational shear waves) destroys the neat separation between irrotational and

incompressible waves. The basic difficulty is that finite rotations have zero divergence
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of velocity, but non-zero divergence of displacement. For example, rotation in the x− y

plane by angle ϕ yields displacement (ax, ay) of

⎡
⎢⎣ax
ay

⎤
⎥⎦ =

⎛
⎜⎝ cosϕ− 1 − sinϕ

sinϕ cosϕ− 1

⎞
⎟⎠

⎡
⎢⎣x
y

⎤
⎥⎦ =

⎡
⎢⎣x(cosϕ− 1)− y sinϕ

x sinϕ+ y(cosϕ− 1)

⎤
⎥⎦ . (5)

The divergence of displacement is ∂xax+∂yay = 2(cosϕ−1), which is not zero in general.

The theory of elastic waves could be improved by including higher-order deriatives,

[8] but this does not solve the fundamental limitation to small displacements. Instead

we use a different approach based on velocity rather than displacement. This approach

leads directly to the concept of spin density.

According to Helmholtz’s Theorem, any vector field may be decomposed into irro-

tational and incompressible components (see e.g. Ref. [9]). Since shear waves are in-

compressible, it is more natural to describe them in terms of rotational (incompressible)

velocity rather than displacement. Recent work by this author attempts to utilize an-

gular momentum and torque densities in place of momentum and force densities as the

fundamental variables for rotational shear waves. [10–12] This description of elastic waves

results in equations quite similar to those of relativistic quantum mechanics, thereby pro-

viding a tangible basis for understanding quantum mechanical spin angular momentum.

In this paper we derive the relationships between spin density and the usual classical

angular momentum in Section 2, apply the concept of spin density to a rigidly rotating

cylinder in Section 3, and analyze elastic waves in Section 4.

2 Angular Variables

The relationship between coordinate-dependent and independent descriptions of angular

variables may be seen as follows. Consider a locally rigid rotation with angular velocity

w around the z-axis. The velocity is given by u = −r×w, and the differential velocity

is du = −dr ×w. Solving for wz yields wz = ∂xvy = −∂yvx = (∇× uϕ)/2, which is the

usual definition of vorticity.

We desire a similar local spin density S whose curl is proportional to linear mo-

mentum. This definition would make the motion explicitly rotational (incompressible),

distinguishing it from compressible (irrotational) motion.

Simply comparing equations L = r × p and u = −r × w, we might expect the

relationship to be ρu = −∇ × S/2. However, the angular momentum density must be

the same sign as vorticity in order to have positive kinetic energy density in the form

of (1/2)w · S. It must also fall to zero at infinity in order to have finite total angular

momentum. These conditions require an angular momentum density maximal at the axis

of rotation and decreasing with increasing radius. This requires dS = −dr× ρu , or

ρu = +
1

2
∇× S . (6)
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Force and torque should be similarly related:

f = +
1

2
(∇× τ) . (7)

Fig. 1 Proportionality Between Force and the Curl of Torque.

The reason that the sign differs from that predicted from the relationship between w

and u is that in the equation u = −r ×w, the velocity u is the circulating vector field,

whereas in the equation τ = r× f , the force f is the circulating vector field. Fig. 1 shows

that at the center of the counter-clockwise torque loop the force points toward the reader,

consistent with the positive curl of torque. Hence the positive signs in Eqs. (6) and (7)

are correct.

Assuming differentiable functions and boundary terms of zero when integrating by

parts, the total angular momentum is given by:

J =

∫
(r× p)d3r =

1

2

∫
r× (∇× S)d3r

=
1

2
êk

∫
(εijkriεlmj∂lSm)d

3r =
1

2
êk

∫
(δklδim − δkmδil)(ri∂lSm)d

3r

=
1

2
êk

∫
(ri∂kSi − ri∂iSk)d

3r = −1

2
êk

∫
([∂kri]Si − [∂iri])Skd

3r

=

∫
Sd3r . (8)
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The total kinetic energy is similarly:

K =
1

2

∫
ρu2d3r =

1

8ρ

∫
[∇× S] · [∇× S]d3r

=
1

8ρ

∫
∂iSj∂iSj − ∂iSj∂jSi]d

3r = − 1

8ρ

∫
[Sj∂i∂iSj − Sj∂j∂iSi]d

3r

= − 1

8ρ

∫
S · ∇2S− S · ∇[∇ · S]d3r = 1

8ρ

∫
S · [∇×∇× S]d3r

=
1

2

∫
w · Sd3r . (9)

Notice that the last step requires the positive sign in Eq. (6).

Hence the definition of spin density given in Eq. (6) yields the same total angular

momentum and kinetic energy as the conventional definition r×p. The new definition is

independent of the choice of origin, is defined only by the motion in a local neighborhood,

and completely determines the rotational momentum density p(r).

Next we show that spin density may be used to describe ordinary rigid rotations.

3 Rigid Rotation

Fig. 2 A Rotating Cylinder.

We will use spin density to describe a cylinder aligned with the z-axis and rotating

rigidly with angular velocity w0 (Fig. 2). The non-zero variables are

Sz = ρw0[R
2 − r2] for r ≤ R; zero for r > R; (10)

uφ =
1

2ρ

∂

∂r
Sz = rw0 for r ≤ R; zero for r > R ; (11)

wz =
1

2r

∂

∂r
ruφ = w0 [1−Rδ(r −R)/2] for r ≤ R; zero for r > R . (12)

The reader may verify that the delta-function in the vorticity yields the correct velocity

jump at the boundary r = R.
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The total angular momentum per unit height is

J = 2π

∫ R

0

Szrdr = 2π

∫ R

0

ρw0[R
2 − r2]rdr

=
1

2
πρR4w0 =

1

2
MR2w0

= Iw0 . (13)

where we have used the mass per unit height M = ρπR2 and moment of inertia per unit

height I =MR2/2.

The kinetic energy per unit height is

K =
1

2

∫
w · S rdrdφ = π

∫ R

0

w0 [1−Rδ(r −R)/2] ρw0[R
2 − r2]rdr

= πρw2
0

[
R4

2
− R4

4

]
=
MR2

4
w2

0 =
1

2
Iw2

0 . (14)

Thus we see that spin density correctly describes rigid rotation of a cylinder about

its axis, yielding the usual expressions for total angular momentum and kinetic energy.

However, orbital angular momentum is likely simpler for describing arbitrary motion

of rigid bodies. The main application for spin density is in continuous media where

incompressible motion may be described as the curl of a vector potential.

4 Application to Elastic Waves

The velocity defined by Eq. (6) is explicitly divergence-free, making this a natural way to

describe shear waves. Previous attempts have demonstrated that rotational shear waves

share many properties with relativistic quantum mechanics. [10–12] Here we derive the

wave equation for rotational shear waves and clarify the relationship to the Dirac equation.

4.1 Wave Equation

The equation of evolution for rotational shear waves is derived by relating torque density

to the rate of change of spin density:

τ =
dS

dt
= ∂tS+ u · ∇S−w × S . (15)

The final two terms subtract the contributions of convection and rotation to the partial

time derivative of S(r, t), since these result from motion of the medium rather than

torque. The right-hand side of the equation is called the ”total” time derivative of S

since it describes the change in angular momentum density of a moving piece of the solid.

We introduce an angular potential Q defined by

∂tQ = Q̇ = S . (16)
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The relationship between S and u implies that for infinitesimal motion

1

2ρ
∇×Q ≈ a ; (17)

1

4ρ
∇×∇×Q ≈ ϕ . (18)

The usual equation for infinitesimal shear waves is therefore equivalent to:

1

2ρ
∇× (∂2tQ+ c2∇×∇×Q) = 0 . (19)

and Feynman’s Eq. (4) for one-dimensional torsion waves is equivalent to:

1

4ρ
∇×∇× (∂2tQ− c2∇[∇ ·Q]) = 0 . (20)

Hence for infinitesimal motion, the torque density is:

τ = c2∇[∇ ·Q]− c2∇×∇×Q = c2∇2Q . (21)

This expression for torque density is based on the usual assumption of a linear rela-

tionship between stress and infinitesimal strain. However, we will simply take it to be

the defining characteristic of the solid medium for arbitrary motion. Notice that we are

not limited to small displacements because Q(r, t) is simply a time integral of S(r, t) at

each fixed point r.

We now have a consistent description of rotational variables:

S = Q̇ ; (22)

ρu = (∇× S)/2 ; (23)

w = (∇× u)/2 ; (24)

τ = c2∇2Q . (25)

Setting the total time derivative of angular momentum equal to torque and rearrang-

ing terms yields the equation of evolution: [11]

∂2tQ− c2∇2Q+ u · ∇Q̇−w × Q̇ = 0 . (26)

The first two terms of this equation describe a wave-like response to torques in the

medium. The last two terms in Eq. (26) represent nonlinear corrections due to finite

motion of the medium. If the nonlinear terms do not cancel, they must be in phase with

the other terms. Replacing the nonlinear terms by M2Q yields :

∂2tQ− c2∇2Q+M2Q = 0 . (27)

If the coefficientM is a constant, then this is a vector Klein-Gordon equation. In general,

however, M could be a function of position.
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4.2 Dirac Equation

Richard Feynman referred to the Dirac equation as a simple and beautiful one ”...which

no one has really been able to understand in any direct fashion.” [13] Dirac’s equation is

admittedly difficult to manipulate since the wave function has four complex components.

However, the following analysis based on Ref. [11] shows that the Dirac equation may be

interpreted simply as a factorization of an ordinary second-order vector wave equation.

Consider a single-polarization wave propagating in one-dimension with amplitude (not

displacement) of a(z, t). If the wave equation is

∂2t a = c2∂2za , (28)

then the general solution is

a = aB(ct+ z) + aF (ct− z) (29)

where aB(z, t) and aF (z, t) are arbitrary functions that propagate along the axis in the

backward and forward directions, respectively. The two directions of wave propagation

are clearly independent states, and they are separated in space by a 180◦ rotation. This
property is the fundamental characteristic of spin one-half functions. Generalization to

three dimensional space should therefore yield a Dirac wave function.

To demonstrate this, we write the wave equation as a matrix equation. The two wave

solutions form an array: ⎡
⎢⎣aB
aF

⎤
⎥⎦ . (30)

Noting that temporal and spatial derivatives vary only by a factor of ±c, the wave

equation becomes

∂t

⎡
⎢⎣ȧB
ȧF

⎤
⎥⎦+

⎛
⎜⎝−1 0

0 1

⎞
⎟⎠ c∂z

⎡
⎢⎣ȧB
ȧF

⎤
⎥⎦ = 0 . (31)

We have now reduced the second-order scalar wave equation to a first-order matrix

equation. The next step is a bit unusual. We further divide each component of the wave

into positive and negative regions (ȧB = ȧB+ − ȧB− and ȧF = ȧF+ − ȧF−). Now each of

the four wave components (ȧB+, ȧB−, ȧF+, ȧF−) is positive-definite, and only one of the

components may be non-zero for each propagation direction. Some caution is warranted

because these components may have discontinuous derivatives at sign transitions, but we

will ignore that issue here. In higher dimensionality positive and negative components

can coexist, indicating a different polarization direction.

We arrange the components in the following order, corresponding to the chiral repre-
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sentation of the Dirac wave function:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ȧB+

ȧF−

ȧF+

ȧB−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

We may now write the time derivative of a as a matrix product:

ȧ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ȧ
1/2
B+

ȧ
1/2
F−

ȧ
1/2
F+

ȧ
1/2
B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ȧ
1/2
B+

ȧ
1/2
F−

ȧ
1/2
F+

ȧ
1/2
B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= ψTσzψ (33)

where σz is the Dirac matrix for the z-component of spin. The temporal and spatial

derivatives have the same sign for backward-propagating waves and opposite signs for

forward-propagating waves. The spatial derivative is therefore given by:

c∂za = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ȧ
1/2
B+

ȧ
1/2
F−

ȧ
1/2
F+

ȧ
1/2
B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ȧ
1/2
B+

ȧ
1/2
F−

ȧ
1/2
F+

ȧ
1/2
B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= −ψTγ5ψ (34)

where γ5 is the Dirac matrix for chirality in the chiral representation. If the amplitude

(a) represents rotation angle, then positive and negative chirality (∂za) are analogous to

left- and right-handed threads on a screw. Wave velocity (v) is obtained by combining

the two matrices used above:

vψ = c

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ȧ
1/2
B+

ȧ
1/2
F−

ȧ
1/2
F+

ȧ
1/2
B−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= cγ5σzψ . (35)

The one-dimensional scalar wave equation may be written in the form:

∂t[ψ
Tσzψ] + c∂z[ψ

Tγ5ψ] = 0 . (36)



52 Electronic Journal of Theoretical Physics 12, No. 33 (2015) 43–60

Other matrices may be inserted between the wave functions, resulting in the following

corresponding expressions, each of which equals zero for the wave solutions:

∂t[ψ
Tσzψ] + c∂z[ψ

Tγ5ψ] = ∂2t a− c2∂2za; (37)

∂t[ψ
Tψ] + c∂z[ψ

Tγ5σzψ] = ∂t|∂taF |+ ∂t|∂taB|+ c2[∂z|∂zaF | − ∂z|∂zaB|]; (38)

∂t[ψ
Tγ5σzψ] + c∂z[ψ

Tψ] = c[∂t|∂zaF | − ∂t|∂zaB|+ ∂t|∂zaF |+ ∂t|∂zaB|]; (39)

∂t[ψ
Tγ5ψ] + c∂z[ψ

Tσzψ] = ∂t[−c∂za] + c∂z[∂ta] . (40)

Generalization to three dimensions is straightforward. The 3-D generalization of

∂z∂zaz utilizes geometric algebra:

∇(∇a) = ∇(∇ · a+ i∇× a)

= ∇(∇ · a)−∇× (∇× a) . (41)

The one-dimensional Dirac wave functions are real with positive-definite components.

Generalization to three dimensions requires complex components and additional matrices.

The one-dimensional wave equation has the bispinor form:

ψT
{
σz∂tψ + cγ5∂zψ

}
+ Transpose = 0 . (42)

We can separate a common factor of ψ†σz:

ψ†σz
{
∂tψ + cγ5σz∂zψ

}
+ Transpose = 0 . (43)

For arbitrary components and derivatives this becomes:

ψ†σj
{
∂tψ + cγ5σi∂iψ

}
+ h.c. = 0 (44)

where ”h.c.” stands for ”hermitian conjugate”.

The matrices σj are the Dirac spin matrices:

σx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; (45)

σy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

; (46)
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σz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (47)

The matrices cγ5σj are the Dirac velocity matrices. The matrix γ5 was defined in Eq.

(34).

Expanding the spatial derivative term in Eq. (44) yields the 3-D generalization of the

wave equation (37):

0 = ∂t
[
ψ†σψ

]
+ c∇ [

ψ†γ5ψ
]− ic

{[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ}
= ∂2t a− c2∇(∇ · a) + c2∇× (∇× a) . (48)

Eq. (40) similarly generalizes to:

0 = ∂t[ψ
†γ5ψ] + c∇ · [ψ†σψ] = ∂t[−c∇ · a] + c∇ · [∂ta] ; (49)

Eqs. (38) and (39) are not easily generalized to vector equations, but in terms of

bispinors they become:

0 = ∂t[ψ
†ψ] + c∇ · [ψ†γ5σψ] (50)

0 = ∂t[ψ
†γ5σψ] + c∇[ψ†ψ] . (51)

The foregoing analysis results in the following identifications between vectors and

bispinors:

∂ta ≡
[
ψ†σψ

]
; (52)

[∇ · a] ≡ − [
ψ†γ5ψ

]
; (53)

c2 {∇ ×∇× a} ≡ −ic{[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ} ; (54)

0 = ic∇ · {[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ} . (55)

These identifications provide seven constraints on the eight free parameters of the

complex Dirac bispinor: three for the first, one for the second, two for the third (since

a curl has only two independent components), and one for the fourth. There is also an

arbitrary overall phase factor.

The last identification simply states that the divergence of a curl is zero. This con-

dition is necessary for consistency. Note that if we attempt to define the curl as a single

term (i.e. c∇×a = ψ†γ5σψ, resulting in a ”-” sign in Eqs. [54] and [55]), then it becomes

impossible to write a Dirac equation for ∂tψ because there is no common factor of ψ†σj
as in Eq. (44).

We now apply a similar interpretation of the Dirac wave function in terms of spin

density (correcting a sign error in Ref. [11]):
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S = ∂tQ ≡ 1

2

[
ψ†σψ

]
; (56)

c∇ ·Q ≡ −1

2

[
ψ†γ5ψ

]
; (57)

c2 {∇ ×∇×Q} ≡ − ic

2

{[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ} ; (58)

0 =
ic

2
∇ · {[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ} . (59)

In terms of bispinors, the rotational wave equation (26) is

0 = ∂t
[
ψ†σψ

]
+ c∇ [

ψ†γ5ψ
]− ic

{[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ}
+u · ∇ [

ψ†σψ
]−w × [

ψ†σψ
]
. (60)

For comparison, the Dirac equation for a free electron (with M = mec
2/h̄) is

∂tψ + cγ5σ · ∇ψ + iMγ0ψ = 0 . (61)

Multiplying this equation by ψ†σj on the left and adding the hermitian conjugate

yields:

∂t
[
ψ†σjψ

]
+c∂j

[
ψ†γ5ψ

]
+ icεijk

{[
∂iψ

†] γ5σkψ − ψ†γ5σk∂iψ
}
= 0 . (62)

This is equivalent to:

∂t
[
ψ†σψ

]
+ c∇ [

ψ†γ5ψ
]− ic

{[∇ψ†]× γ5σψ + ψ†γ5σ×∇ψ} = 0 . (63)

Using our definitions, this is just the wave equation. It differs from our equation for the

evolution of spin angular momentum density in an elastic solid only by the two nonlinear

terms. This is interesting because many researchers have attempted to obtain particle-like

solutions from the Dirac equation by adding nonlinear terms to Dirac’s original equation.

[14–21]

It is also instructive to write the equation for elastic waves in Dirac form. Expanding

the derivatives yields

ψ†σj

[
∂tψ + cγ5σ · ∇ψ + u · ∇ψ +w · iσ

2
ψ

]
+ h.c. = 0 . (64)

The Hermitian conjugate wave function ψ† may be regarded as an independent variable

(it may be combined with the original wave function to separate the real and imaginary

parts). Validity for arbitrary ψ† requires the terms in brackets to sum to zero. This yields

the equation

∂tψ + cγ5σ · ∇ψ + u · ∇ψ + iw · σ
2
ψ + iχψ = 0 (65)

where χ may be any operator with the property

Re
{
ψ†σjiχψ

}
= 0 . (66)

Dirac’s mass term is an example. However, we will set χ to zero, assuming that mass

(along with any missing nonlinear terms in the Dirac equation) is derived from the con-

vection and rotation terms.
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4.3 Lagrangian and Hamiltonian

Now we construct a Lagrange density L . Lagrange’s equation of motion for a field

variable ψ is

∂t
∂L

∂ [∂tψ]
+
∑
j

∂j
∂L

∂ [∂jψ]
− ∂L

∂ψ
= 0 . (67)

A similar equation holds with ψ† replacing ψ. It is possible to construct a Lagrangian

with no derivatives of ψ†, in which case the equation of motion is simply ∂L /∂ψ† = 0.

The nonlinear terms contain two factors of ψ†. In the rotation term, these may be

interchanged using integration by parts, so a factor of 1/2 is required in the Lagrangian.

Integration by parts of the convection term yields a term containing ∇ ·u, which is zero.

Therefore the factor of ψ† in u does not contribute to the equation of evolution. The

Lagrangian is therefore

L = iψ†∂tψ + ψ†cγ5σ · i∇ψ + u · ψ†i∇ψ − 1

2
w · ψ†σ

2
ψ . (68)

This Lagrangian is not real, but real-valued quantities may be regarded as the real part

of complex expressions.

The conjugate momentum to the field ψ is pψ:

pψ =
∂L

∂ [∂tψ]
= iψ† . (69)

The Hamiltonian is

H = pψ∂tψ −L = −ψ†cγ5σ · i∇ψ − u · ψ†i∇ψ +
1

2
w · ψ†σ

2
ψ . (70)

We recognize the last term in the Hamiltonian as the kinetic energy density K =

w · S/2. The first term involves only spatial derivatives, so we propose that it represents

elastic potential energy. The second term represents convection of gradients by the motion

of the medium. Since shear waves are transverse, this motion is perpendicular to the wave

velocity (determined by the matrix γ5σ). Therefore this term can be non-zero only if

the wave velocity is not parallel to −ψ†i∇ψ (which we shall see is the wave momentum).

We hypothesize that this term integrates to zero, not contributing to the total energy. A

prior attempt by this author to incorporate this term into the kinetic energy blurred the

distinction between wave propagation and motion of the solid medium. [12]

The Hamiltonian operator is defined by i∂tψ = Hψ, with

H = −cγ5σ · i∇ψ − u · i∇ψ +
1

2
w · σ

2
ψ . (71)

4.4 Dynamical Variables

The Hamiltonian is a special case (T 0
0 ) of the energy-momentum tensor:

T μν =
∂L

∂ [∂μψ]
∂νψ −L δμν . (72)
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Notice that in the Lagrangian, the kinetic energy term is negative. Therefore the

conjugate momenta computed from the Lagrangian will also have the opposite sign of

physical quantities. The dynamical (or wave) momentum density pi is

pi = −T 0
i = − ∂L

∂ [∂tψ]
∂iψ = −ψ†i∂iψ . (73)

The wave angular momentum density is likewise

L = − ∂L

∂ [∂tψ]
∂ϕψ = −iψ†∂ϕψ = −iψ† ∂ri

∂ϕ
∂iψ = −r× ψ†i∇ψ . (74)

This expression assumes a particular origin for the axis of rotation of the angle ϕ, in

contrast to the coordinate-independent spin angular momentum. One could attempt

to express orbital angular momentum density as the field whose curl is twice the wave

momentum density, but we will not pursue that here.

For total momentum and angular momentum, we must combine the wave and medium

contributions (p and q, respectively):

P = p+ q = −ψ†i∇ψ +
1

2
∇× ψ†

σ

2
ψ ; (75)

J = L+ S = −r× ψ†i∇ψ + ψ†
σ

2
ψ . (76)

The expression for total momentum density was previously obtained by Ohanian using a

symmetrized energy-momentum tensor. [1]

Interestingly, we could have obtained the results of Eqs. (75) and (76) by treating

either velocity u or vorticity w as an independent variable in the Lagrangian above.

Rewriting the kinetic energy density as ρu2/2, the negative of the conjugate momentum

would be

P = −∂L
∂u

= −ψ†i∇ψ + ρu = −ψ†i∇ψ +
1

2
∇× ψ†

σ

2
ψ . (77)

And if u includes a rotational component r × w, then the negative of the conjugate

angular momentum would be (treating S as a function of w)

J = −∂L
∂w

= −r× ψ†i∇ψ + ψ†
σ

2
ψ . (78)

These results are identical to Eqs. (75) and (76).

When interpreting angular derivatives, the reader should be cautious to distinguish

between active and passive rotations. The differential ∂ϕψ = r × ∇ψ refers to passive

rotation, or rotation of the point of evaluation of the function. Active rotations rotate

the function along with the evaluation point, as described by the operator Uϕ satisfying

the equations: [22]

∂ϕUϕψ = −i(L+ S)ψ = −r×∇ψ − i
σ

2
ψ ; (79)

Uϕψ = exp {−i(L+ S) ·ϕ}ψ . (80)

Thus we see that classical spin density applied to elastic waves yields equations and

operators very similar to relativistic quantum mechanics.
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5 Discussion

We have shown that classical spin density, which was originally derived as an interpreta-

tion of quantum mechanical spin density, is consistent with the usual classical description

of arbitrary rotations. Spin density is therefore an important concept for a unified under-

standing of both classical and quantum physics. In particular, rotational elastic waves

share properties of both classical and quantum systems.

Elastic waves have played an important role in the study not only of solids, but also

of light and matter. Physicists have attempted to describe the universe as a solid since

the 18th century, when Thomas Young explained polarization of light as analogous to

shear waves. Young’s idea was further developed by the likes of Fresnel, Navier, Cauchy,

Rayleigh, Heaviside, Green, Thomson (Lord Kelvin), Riemann, Boussinesq, and many

others. [3] An elastic solid model was the basis for MacCullagh’s original derivation of an

equation for light. [4] Maxwell developed the equations for electromagnetism by modeling

a lattice of elastic cells, and questioned, ”... what if these molecules, indestructible as

they are, turn out to be not substances themselves, but mere affections of some other

substance?” [23]

Unfortunately, introductory physics textbooks typically dismiss the idea of a universal

wave medium, saying it was disproven by Michelson and Morley. That is of course

nonsense, as Lorentz-invariant equations such as MacCullagh’s and Maxwell’s are quite

commonly derived for a medium carrying a wave. What aether-drift experiments proved

is that Earth does not move through space like a rock through water (or through oobleck,

the corn starch solution that behaves like a solid for rapid vibrations but like a liquid for

slower processes).

We now know that matter propagates through the vacuum in a wave-like manner.

Equations describing these waves, such as the Dirac equation, may be interpreted as de-

scribing dynamics as well as probabilities. [24,25] Although the properties of matter can

be described without reference to an ”aether”, such models can still be useful for illu-

minating relationships between physical quantities. Dirac himself held this view, writing

”It is necessary to set up an action principle and to get a Hamiltonian formulation of the

equations suitable for quantization purposes, and for this the aether velocity is required.”

[26] Recently, there have been several investigations of solid crystalline models of the

vacuum. [27–30]

Given the similarity between classical and quantum equations, it is interesting to

ponder what the universe would be like if the vacuum were an elastic solid. Elementary

particles would have to be standing or particle-like waves, subject to the wave uncertainty

principle. Special relativity would be a consequence of the Lorentz invariance of the wave

solutions, and not a property of the space-time in which the waves propagate. [31] The

spatial reflection of any solution would also be a solution, so every particle would have an

anti-particle that behaves like its mirror image. [32] Measurements would have to change

the standing wave configuration from one stable state to another, implying quantization of

measurement. Tension induced by twisting of the elastic medium would increase density
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and decrease wave speed, similar to the way the presence of matter decreases wave speed

in general relativity. Hence gravity could be described by an index of refraction. [33–35]

In short, an elastic solid universe would be similar in many ways to the one we live

in. And although some properties of matter may be impossible to explain using such a

classical model, spin angular momentum is not one of them.

6 Conclusions

Classical spin angular momentum density is the field whose curl is equal to twice the

momentum density for incompressible (rotational) motion. Compared with the usual

classical definition of angular momentum density as r × p, spin density is a local and

complete description of rotational motion that yields the same total angular momentum

and kinetic energy. A rotating cylinder constitutes a simple example for the application of

spin density. Using spin density to describe elastic waves yields equations similar to those

of fermions with identical operators for energy, momentum, and angular momentum.
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