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The first-order quantum mechanical Dirac equation is interpreted as a representation of a
second-order vector wave equation for spin angular momentum density (or spin density). This
interpretation offers students a simple classical physics interpretation of relativistic quantum
mechanics. This paper outlines how a classical wave theory of spin density can be used to describe
particle-like waves and their interactions, offering students a conceptual bridge between classical
physics and quantum mechanics. Wave interference of spin eigenfunctions gives rise to the Pauli
exclusion principle and electromagnetic potentials. Classical interpretations of magnetic flux
quantization and the Coulomb potential are presented. A classical version of the single-electron
Lagrangian for quantum electrodynamics is also presented.
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1. INTRODUCTION

Previous work has proposed that physics students should be introduced to quantum mechanics using the Dirac
equation, which is both relativistic and describes spin angular momentum, rather than via the Schrödinger equation.
Classical spin density (s) is the field whose curl is equal to twice the momentum density (p). The relationship to
Dirac wave functions is: [1–3]

s = ∂tQ ≡
1

2

[
ψ†σψ

]
; (1a)

c∇ ·Q ≡ −1

2

[
ψ†γ5ψ

]
; (1b)

c2 {∇ ×∇×Q} ≡ − ic

2

{[
∇ψ†

]
× γ5σψ + ψ†γ5σ×∇ψ

}
; (1c)

0 =
ic

2
∇ ·
{[
∇ψ†

]
× γ5σψ + ψ†γ5σ×∇ψ

}
. (1d)

The Dirac formalism, in addition to quantum mechanical application, has a variety of applications in describing
classical physics. [1–11] There has also been observation of quantum mechanical behavior of classical systems. Quan-
tum statistics have been observed in experiments using silicone droplets bouncing on a vibrating water tank. [12–18]
Such experiments provide a physical realization of Bohmian mechanics, or pilot-wave theory. [19–21]

This work examines how wave interactions give rise to the Pauli exclusion principle and electromagnetic potentials.
We discuss magnetic flux quantization and magnetic flux and electric charge of an electron. Finally, we relate the
classical Lagrangian to that of quantum electrodynamics.

2. WAVE INTERACTIONS

Suppose we have two Dirac wave functions ψA and ψB , representing particle-like waves A and B. Adding the wave
functions yields a total wave function ψT satisfying:

ψ†TσψT = (ψA + ψB)†σ(ψA + ψB)

= ψ†AσψA + ψ†BσψB + ψ†AσψB + ψ†BσψA . (2)

Since the spins must be additive, the total wave function is not generally the sum of the individual wave functions.
However, we can treat the wave functions as being independent if the interference terms cancel [1]. This cancelation
imposes a vector constraint on the wave functions:

ψ†AσψB + ψ†BσψA = 0 . (3)

Since spin density has three components, there are three independent constraints on the wave interaction. In other
words, one wave function interacts with another wave function in three different ways. This paper will only consider
electromagnetic forces.

Assuming either of the waves to be a spin eigenfunction everywhere, one component of this constraint requires the
wave functions to anti-commute:

ψ†AψB + ψ†BψA = 0 . (4)

For waves representing identical particles, this is the Pauli exclusion principle. Hence we can conclude that standing
waves described by spin eigenfunctions are fermions.

The anti-commutation of wave functions is not true in general, but we can force the cancellation by introducing a
phase shift at each point between the two wave functions. Such phase shifts have no effect on the actual dynamics
of the total wave, but allow us to pretend that each particle wave maintains its separate identity even though there
is actually only one combined wave. Of course, this procedure is only valid if the particles interact weakly enough
to remain distinguishable during the interaction. This limitation does not invalidate the basic premise that physical
quantities are fully determined by the spin density field.

The phase shift (δ) is determined from the constraint:

Re(ψ†A exp (iδ)ψB) = 0, (5)
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or

Re(ψ†AψB) cos δ − Im(ψ†AψB) sin δ = 0 . (6)

This yields:

tan δ =
Re(ψ†AψB)

Im(ψ†AψB)
. (7)

If we define exp (iβ) = ψ†AψB/|ψ
†
AψB |, then:

tan δ = cotβ . (8)

and:

exp (iδ) = ±i exp (−iβ) = ±i
ψ†BψA

|ψ†AψB |
. (9)

Therefore the phase angles are related by:

δ =
π

2
− β ± nπ (10)

where n is an integer. Note that δ is only unique within an arbitrary multiple of π. The π/2 phase shift is a constant,
so we will ignore it while analyzing phase shifts of individual particles.

Suppose we start with two wave functions ψ′A and ψ′B , initially non-overlapping and normalized to one (~ will be
multiplied explicitly to provide the dimension of angular momentum). We will assume that each particle is shifted
by a phase attributable to the other particle: ψA = ψ′A exp (iδA) and ψB = ψ′B exp (iδA), where the primed variables
have zero interference. As they approach each other, the total wave function is ψT = ψA + ψB . The phase shifts
satisfy:

exp (i(δA − δB)) = i
ψ†BψA

|ψ†AψB |
≡ exp (i(ϕB − ϕA + π/2)) (11)

where ϕA and ϕB are phases associated with particles A and B, respectively. A simple choice would be to weight the
phase shifts by the relative magnitudes of each wave:

δA =
|ψB |2

|ψA|2 + |ψB |2
(ϕB − ϕA + π/2))

δB = − |ψA|2

|ψA|2 + |ψB |2
(ϕB − ϕA + π/2)) (12)

Since the π/2 phase shift is constant, we will omit it from the following analysis.
The original wave functions satisfy the free-particle wave equation, e.g.

~∂t(exp [−iδA]ψA) = −iH0 exp [−iδA]ψA. (13)

We take ψ′A to be an electron wave function with free particle hamiltonian H0ψ
′
A = (−cγ5σ · i~∇+mec

2γ0)ψ′A.
Expanding the Dirac equation for ψA yields:(

~(i∂t + [∂tδA]) + ~cγ5σ · (i∇+ [∇δA])−mec
2γ0
)
ψA = 0 , (14)

where square brackets indicate that the derivatives apply only to the variables inside the brackets.
The modified Hamiltonian is:

HψA = i~∂tψA = −~[∂tδA]ψA + cγ5σ · ~(−i∇− [∇δA])ψA +mec
2γ0ψA . (15)

The modified momentum density is:

ψ†A exp [iδA](−i~∇) exp [−iδA]ψA = ψ†A(−i~∇− ~∇δA)ψA (16)
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We will drop the subscript A in the following analysis.
The mass term in the Dirac equation, which may be interpreted as rotation of wave velocity, does not appear in

the second-order vector wave equation for spin density. Therefore, it is clear that changes in wave velocity may be
accomplished via linear processes.

The wave force density, or time derivative of momentum density, is found from the partial time derivative and the
commutator of the hamiltonian with the momentum operator:

dtPi = ψ†A(−~∂t∂iδA +
i

~
[H, (−i~∂i − ~∂iδA)])ψA

= −ψ†
[
~∂t∂iδA − ~∂i(∂tδA)− ~c∂i(γ5σj∂jδA) + ~c(γ5σj∂j)∂iδA

]
ψ

= ψ†
[
~(∂i∂t − ∂t∂i)δA − ~cγ5σj(∂i∂j − ∂j∂i)δA)

]
ψ (17)

Note that there is no change in momentum density if the derivatives commute everywhere. Hence plane waves would
not be affected by the presence of other plane waves. However, because the phases are multivalued, the derivatives
do not generally commute.

To simplify analysis, we define the vector potential by qA ≡ −~∇δA, the electric potential by qΦ = ∂tδA, the charge

density by ρA ≡ qψ
†
AψA, and the current density by JA ≡ ψ†Aqcγ5σψA. The rate of change of momentum density is:

dtPi = ρA(−∂iΦA − ∂tAi) + Jj(∂iAj − ∂jAi) (18)

In vector form:

dtP = ρA(−∇Φ− ∂tA) + JA × (∇×A) . (19)

This is equivalent to the Lorentz force with:

E = −∇Φ− ∂tA , (20a)

B = ∇×A . (20b)

Others have similarly identified the vector potential A as the gradient of a multivalued field.[22–24] The curl of such
gradients need not be identically zero. This interpretation is also consistent with Synge’s ”primitive quantization” in
which Planck’s constant h represents the action for a single wave cycle. [25]

Suppose wave B is a macroscopic wave (|ψB |2 >> |ψA|2) with azimuthal dependence ψB ∼ exp (−imBφB/2), where
φB is the azimuthal angle around the local axis zB through the center of particle B, and mB is the azimuthal angular
quantum number. The phase shift of ψA would then vary by −mBπ along a closed path around the zB-axis:∮

∇δA · d` = mφπ (21)

for some integer mφ. Stoke’s law then yields quantization of magnetic flux:

{
B · n̂ dS =

∮
A · d` = mφπ

~
q

= mφ
h

2q
. (22)

This classical quantization of magnetic flux is consistent with de Broglie’s observation in a 1963 interview that ”...
in quantum phenomena one obtains quantum numbers, which are rarely found in mechanics but occur very frequently
in wave phenomena and in all problems dealing with wave motion.” [26]

2.1. Electron Interactions

Alternatively, suppose that ψB has a phase factor exp (i(mBφB − ωBt)), and similarly for ψA. This phase factor is
appropriate for a vector spherical harmonic wave. The angular frequency of the bispinor wave function is related to
mass by ~ωB = mec

2. The angular frequency of the vector wave function would be twice this.
For simplicity, we define rB = |r − rB | to be the distance from the center of particle B at rB . The distance rA is

similarly defined for particle A. The distance between the centers of the two particles is rAB .
The phase shift of ψA is:

δA =
|ψB |2

|ψA|2 + |ψB |2
[(mBφB − ωBt))− (mAφA − ωAt))] (23)
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2.2. Magnetic Flux

The computed magnetic flux around B will vary with distance from the particle center. We are interested in the
phase shift of A attributable to particle B, near the center of A. Near rA = 0 we have |ψA|2 >> |ψB |2. Hence we can
approximate the phase shift as:

δA ≈

([
|ψB |2

|ψA|2

]
r≈rA

)
(mBφB − ωBt) (24)

Assume that each charge density has a peak value ρM and asymptotic radial decay of ρMα/(κr).

δA ≈
(

α

κrB

)
(mBφB − ωBt) (25)

This is the phase shift in the vicinity of rB ≈ rAB where |ψA|2 >> |ψB |2. The magnetic vector potential is:

e

~
A = −

(
α

κrB

)(
mB

rB sin (θB)

)
φ̂B +

α

κr2B
(mBφB − ωBt)r̂ (26)

Magnetic flux is due to the azimuthal component of the vector potential:

e

~
A = −

(
α

κrB

)(
mB

rB sin (θB)

)
φ̂B (27)

Given the expression for A, the effective magnetic field at finite distance rB from the center of B is:

B =
~αmB

eκr3B sin (θB)
θ̂B (28)

This is not a simple dipole field.
For mB = 1/2, the magnetic flux through the plane sin (θB) = 1 is:∮

(A · d`) = −π − ~α
eκrB

π (29)

Taking α = e2/(4πε0~c) to the be fine structure constant and κ = mec/~, the radial variation of this flux is the same
as for an electron.

2.3. Electric Field

To calculate an electric force, we note that the phase velocity for a stationary spherical harmonic wave is:

vp =
2ωB
mB

r sin θBφ̂ (30)

For simplicity, we neglect any motion of particle B. Changes of phase are attributable to convection. Using ∂tδA =
−vp · ∇δA yields:

eEi = ~((∂ivj)∂j + vj(∂i∂j − ∂j∂i))δA (31)

The second term cannot contribute to the field because the phase velocity is zero at the point where the derivatives
do not commute. The radial component is thus:

eEr = ~(∂rvφ)Aφ (32)

Direct substitution yields:

eEr =
~ωB α
κr2B

(33)

Letting κ = ωB/c yields:

E =
~c α
er2B

r̂ (34)

This is the usual electric field of a point charge located at rB = 0.
Recall that we neglected any contribution from the phase of A. Since the electric field is radial, any contribution

from the phase shift proportional to ϕA would not affect the bulk motion of particle A.
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2.4. Maxwell’s Equations

The electromagnetic fields defined above are also subject to Maxwell’s equations. The definitions of E and B imply
Faraday’s Law and Gauss’ magnetic law:

∇×E = −∂tB , (35a)

∇ ·B = 0. (35b)

Gauss’ electric law and Ampere’s law define the charge and current densities (ρe and J, respectively):

∇ ·E = −(∇ · ∂tA +∇2Φ) ≡ ρe
ε0
, (36a)

∇×B− 1

c2
∂tE = ∇× (∇×A) +

1

c2
(∂2tA + ∂t∇Φ)

≡ µ0J . (36b)

As derived above, the electric field of a spherical harmonic wave corresponds to that of a point charge. These definitions
of charge and current densities are consistent with the continuity equation:

∂tρe +∇ · J = 0 . (37)

There is a discrepancy between the point-like source charge density of Maxwell’s equations, and the object charge
density of wave mechanics. In wave mechanics, the object charge density is ”smeared out” throughout the wave
function. It is similarly smeared out in quantum mechanics, in which case the smearing is attributed to uncertainty
of position.

Hence particle-like waves in an elastic solid can behave like fermions, with electromagnetic potentials derived from
phase shifts that result from wave interference.

2.5. Quantum Electrodynamics

It is customary in quantum mechanics textbooks to define ψ̄ ≡ ψ†γ0, replace ψ† with ψ̄γ0, and define the ”4-vector”
of matrices γµ ≡ (γ0, γ0γ5σ). The 4-potential is Aµ = (Φ,−A) and the 4-current (ρ,J) is Jµ = qψ̄γµψ. These changes
of variables are intended to make the theory look more ”relativistic”. It is also common to use ”natural” units with
µ0 = ε0 = c = 1. Using this notation with ∂µ = (∂t,∇), the Lagrangian density for two interacting electrons is:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + ψ̄B [γµ(i∂µ − qAµ)−mB ]ψB . (38)

Separating the interaction of particle B yields:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + ψ̄B [γµ(i∂µ)−mB ]ψB − JµAµ . (39)

Since the Dirac equation is satisfied for each particle, this is equivalent to:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + JµAµ − JµAµ . (40)

Relationships between potentials and sources are given in Eqs. 36. Assuming time-independence with zero diver-
gence of the vector potential and zero curl of the electric field, the sources become:

ρe
ε0

= −∇2Φ , (41a)

µ0J = ∇× (∇×A) . (41b)

Therefore:

JµAµ = −Φ∇2Φ−A · (∇×∇×A) . (42)

According to Green’s first identity:

−
∫
V

Φ∇2ΦdV =

∫
(∇Φ)2dV −

∫
∂V

Φn · ∇ΦdS . (43)
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Similarly:

−
∫
V

A · (∇×∇×A)dV = −
∫
V

(∇×A)2dV +

∫
∂V

A× (∇×A)dS . (44)

Using the definitions of E and B while neglecting boundary integrals yields:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + (E2 −B2)− JµAµ (45)

This differs from the (non-quantized) Lagrangian density of quantum electrodynamics (QED) by a factor of 1/2 in
front of (E2−B2). This difference is resolved by the fact that when varying the potentials Aµ, the source densities Jµ

should be regarded as functions of Aµ. However, it is conventional to vary the potentials independently of the source
densities, yielding only half of the correct value. When computing variations of E2 and B2, both factors in E2 (and
B2) are varied. To eliminate this double-counting and be consistent with independent variation of the potentials, a
factor of 1/2 must be introduced:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA +
1

2
(E2 −B2)− JµAµ (46)

This is the Lagrangian density of non-quantized QED, in which a single charged fermion interacts with an electro-
magnetic field. Generalization to multiple interacting particles requires a quantization procedure with raising and
lowering operators to allow for changes in the numbers of particles.

3. DISCUSSION

We have outlined a similarity between a classical model of interacting waves in an elastic solid to quantum elec-
trodynamics (QED). This interpretation of QED, and by extension the Standard Model, is that it represents a
decomposition of the classical spin density field into interacting elementary particles. Others have also associated
quantum mechanical behavior with waves in an elastic solid. [10, 27–30]

4. CONCLUSIONS

This paper describes interactions of classical waves of spin density. Wave interference of spin eigenfunctions gives
rise to the Pauli exclusion principle and electromagnetic potentials, with suggested interpretations of magnetic flux
quantization and the Coulomb potential. The Lagrangian density of single-fermion quantum electrodynamics is also
given a classical physics interpretation. Hence classical wave theory offers insight into the physical basis for relativistic
quantum mechanics.
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