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The first-order quantum mechanical Dirac equation is interpreted as a representation of a
second-order vector wave equation for spin angular momentum density (or spin density), the
classical vector field whose curl is equal to twice the momentum density. This interpretation
describes interactions between particle-like waves, offering students a conceptual bridge between
classical physics and quantum mechanics. Wave interference of spin eigenfunctions gives rise to the
Pauli exclusion principle and electromagnetic potentials. Classical interpretations of magnetic flux
quantization and the Coulomb potential are presented. A classical version of the single-electron
Lagrangian for quantum electrodynamics is also presented.
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1. INTRODUCTION

Previous work has proposed that physics students should be introduced to quantum mechanics using the Dirac
equation rather than the Schrödinger equation. Unlike the Schrödinger equation, the Dirac equation is compatible
with special relativity, and also has a simple classical physics interpretation as a description of spin density (s), the
field whose curl is equal to twice the momentum density of a continuous medium. [1–3] The relationship to Dirac
wave functions is:

s = ∂tQ ≡
1

2

[
ψ†σψ

]
; (1a)

c∇ ·Q ≡ −1

2

[
ψ†γ5ψ

]
; (1b)

c2 {∇ ×∇×Q} ≡ − ic

2

{[
∇ψ†

]
× γ5σψ + ψ†γ5σ×∇ψ

}
; (1c)

0 =
ic

2
∇ ·
{[
∇ψ†

]
× γ5σψ + ψ†γ5σ×∇ψ

}
. (1d)

Although the use of spinors is beyond typical undergraduate curricula, the above relationships between vectors and
spinors is easily derived as a three-dimensional generalization of the one-dimensional wave equation. [1–3] The Dirac
formalism, in addition to quantum mechanical application, has a variety of applications in describing classical physics.
[1–11] There has also been observation of quantum mechanical behavior of classical systems. Quantum statistics have
been observed in experiments using silicone droplets bouncing on a vibrating water tank. [12–18] Such experiments
provide a physical realization of Bohmian mechanics, or pilot-wave theory. [19–21]

This work examines how classical wave interactions give rise to the Pauli exclusion principle and electromagnetic
potentials. We discuss magnetic flux quantization and magnetic flux and electric charge of an electron. Finally, we
relate the classical Lagrangian to that of quantum electrodynamics.

2. WAVE INTERACTIONS

Suppose we have two Dirac wave functions ψA and ψB , representing particle-like waves A and B. Adding the wave
functions yields a total wave function ψT satisfying:

ψ†TσψT = (ψA + ψB)†σ(ψA + ψB)

= ψ†AσψA + ψ†BσψB + ψ†AσψB + ψ†BσψA . (2)

Since the spins must be additive, the total wave function is not generally the sum of the individual wave functions.
However, we can treat the wave functions as being independent if the interference terms cancel [1]. This cancelation
imposes a vector constraint on the wave functions:

ψ†AσψB + ψ†BσψA = 0 . (3)

Assuming either of the waves to be a spin eigenfunction everywhere, one component of this constraint requires the
wave functions to anti-commute:

ψ†AψB + ψ†BψA = 0 . (4)

For waves representing identical particles, this is the Pauli exclusion principle. Hence we can conclude that standing
waves described by spin eigenfunctions are fermions.

Even if neither particle is a spin eigenfunction, we can construct a modified particle ψ′B = σBψB where σB(r, t) =
ŝB · σ is the spin matrix aligned with the spin direction ŝB(r, t) of particle B. The wave function ψ′B yields the same
spin everywhere as ψB , and thus is physically equivalent. Using ψ′B in Eq. 3 again yields Eq. 4 for the component
aligned with the spin of particle B.

The anti-commutation of wave functions is not true in general, but we can force the cancellation by introducing a
phase shift at each point between the two wave functions. Such phase shifts have no effect on the actual dynamics
of the total wave, but allow us to pretend that each particle wave maintains its separate identity even though there
is actually only one combined wave. Of course, this procedure is only valid if the particles interact weakly enough
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to remain distinguishable during the interaction. This limitation does not invalidate the basic premise that physical
quantities are fully determined by the spin density field.

The phase shift (δ) is determined from the constraint:

Re(ψ†A exp (iδ)ψB) = 0, (5)

or

Re(ψ†AψB) cos δ − Im(ψ†AψB) sin δ = 0 . (6)

This yields:

tan δ =
Re(ψ†AψB)

Im(ψ†AψB)
. (7)

If we define exp (iβ) = ψ†AψB/|ψ
†
AψB |, then:

tan δ = cotβ . (8)

and:

exp (iδ) = ±i exp (−iβ) = ∓i
ψ†AψB

|ψ†AψB |
. (9)

Therefore the phase angles are related by:

δ =
π

2
− β ± nπ (10)

where n is an integer. Note that δ is only unique within an arbitrary integer multiple of π.
Suppose we start with two wave functions ψ′A and ψ′B , initially non-overlapping and normalized to one (~ will be

multiplied explicitly to provide the dimension of angular momentum). We will assume that each particle is shifted
by a phase attributable to the other particle: ψA = ψ′A exp (iδA) and ψB = ψ′B exp (iδB), where the primed variables
have zero interference (δA − δB = δ). As they approach each other, the total wave function is ψT = ψA + ψB . The
phase shifts satisfy:

exp (i(δA − δB)) = i
ψ†BψA

|ψ†AψB |
≡ exp (i(ϕB − ϕA + π/2)) (11)

where ϕA and ϕB are phases associated with particles A and B, respectively. This construction assumes that variations
of phase of each component of a particle-like wave are attributable to a common phase factor. The phase shifts must
be weighted so that the weaker wave is more affected by the stronger wave than vice-versa. A simple choice would be
to weight the phase shifts by the relative magnitudes of each wave:

δA =
|ψB |2

|ψA|2 + |ψB |2
(ϕB − ϕA + π/2))

δB = − |ψA|2

|ψA|2 + |ψB |2
(ϕB − ϕA + π/2)) (12)

Since the π/2 phase shift is constant, we will omit it from the following analysis of derivatives of the phase shifts.
The original wave functions satisfy the free-particle wave equation, e.g.

i~∂t(exp [−iδA]ψA) = H0 exp [−iδA]ψA. (13)

We take ψ′A to be an electron wave function with free particle hamiltonian H0ψ
′
A = (−cγ5σ · i~∇+mec

2γ0)ψ′A.
Expanding the Dirac equation for ψA yields:(

~(i∂t + [∂tδA]) = ~cγ5σ · (−i∇− [∇δA]) +mec
2γ0
)
ψA , (14)

where square brackets indicate that the derivatives apply only to the variables inside the brackets.
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The modified Hamiltonian is:

HψA = i~∂tψA = −~[∂tδA]ψA + cγ5σ · ~(−i∇− [∇δA])ψA +mec
2γ0ψA . (15)

The modified momentum density is:

ψ†A exp [iδA](−i~∇) exp [−iδA]ψA = ψ†A(−i~∇− ~∇δA)ψA (16)

The wave force density, or time derivative of momentum density, is found from the partial time derivative and the
commutator of the hamiltonian with the momentum operator:

dtPi = ψ†A(−~∂t∂iδA +
i

~
[H, (−i~∂i − ~∂iδA)])ψA

= ψ†A
[
−~∂t∂iδA + ~∂i(∂tδA)− ~c(γ5σj∂j)∂iδA + ~c∂i(γ5σj∂jδA)

]
ψA

= ψ†A
[
~(∂i∂t − ∂t∂i)δA + ~cγ5σj(∂i∂j − ∂j∂i)δA)

]
ψA (17)

Note that there is no change in momentum density if the derivatives commute everywhere. Hence plane waves
would not be affected by the presence of other plane waves. However, the derivatives do not generally commute.
The spatial derivatives do not generally commute because the phases are multivalued. And the time derivative is not
independent of the spatial derivatives because each particle’s phase pattern moves with the particle. For example,
a wave pulse f(x, t) = f0 exp [−(x− ct)2] moves along the x-axis with speed c. The pulse is defined by its shape
f(x′), but the variable x′ = (x− ct) is not independent of time. In this case ∂tf = −c∂x′f . Likewise, a particle with
phase factor f = cos (mφ′ − ωt), with φ′ defined relative to the center of the rotating wave pattern, is also defined
by trajectories of constant phase. In this case ∂tf = −(ω/m)∂φ′f . Keep in mind that our attribution of phase shifts
must be consistent with our artificial decomposition of the wave into ”particles”.

To simplify analysis, we define the vector potential by qA ≡ ~∇δA, the electric potential by qAΦ = −∂tδA, the

charge density by ρA ≡ qAψ
†
AψA, and the current density by JA ≡ ψ†AqAcγ

5σψA. The rate of change of momentum
density is:

dtPi = ρA(−∂iΦA − ∂tAi) + Jj(∂iAj − ∂jAi) (18)

In vector form:

dtP = ρA(−∇Φ− ∂tA) + JA × (∇×A) . (19)

This is equivalent to the Lorentz force with:

E = −∇Φ− ∂tA , (20a)

B = ∇×A . (20b)

Others have similarly identified the vector potential A as the gradient of a multivalued field.[22–24] The curl of such
gradients need not be identically zero. This interpretation is also consistent with Synge’s ”primitive quantization” in
which Planck’s constant h represents the action for a single wave cycle. [25]

Note that since forces arise only from non-commuting variables, the electric force on particle A is proportional to
|ψA|2|ψB |2/(|ψA|2 + |ψB |2), and is everywhere equal and opposite to the electric force on particle B. The magnetic
forces on A and B are not necessarily locally equal and opposite, as is also the case in classical physics.

2.1. Charge and Parity

Thus far we have offered no explanation for positive and negative charge. However, it is well known that vector
spherical harmonics have odd parity for odd integer angular quantum numbers, and even parity for even integer
angular quantum numbers. Hence vector spherical harmonics have distinct mirror images only for odd integer angular
quantum numbers. Since the bispinor wave functions transform under rotations with half the phase change of the
vector wave functions, we therefore expect that elementary bispinors with half-integer quantum numbers have distinct
mirror images, whereas elementary bispinors with whole integer quantum numbers do not have distinct mirror images.
This is consistent with the fact that all elementary fermions have distinct antiparticles, and nearly all elementary
bosons do not have distinct antiparticles (the W+ and W− are each other’s antiparticle, but perhaps they are not
described by simple spherical harmonics).

The conventional transformation between matter and antimatter includes spatial inversion but is not equivalent to
it. However, the conventional parity operator was derived assuming the underlying physical space to be a Minkowski
spacetime, whereas the analysis here starts from a Galilean spacetime. Hence for our purposes we simply assume that
matter and antimatter, and hence positive and negative charges, are simply mirror images of each other.
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2.2. Magnetic Flux Quantization

Suppose wave B is a macroscopic wave (|ψB |2 >> |ψA|2) with azimuthal dependence ψB ∼ exp (i(mBφB − ωBt),
where φB is the azimuthal angle around a local axis zB and mB is a half or whole integer azimuthal angular quantum
number. The angular quantum number and frequency ωB are doubled for the vector wave function. The phase shift
of ψA would then vary by mBπ along a closed path around the zB-axis:∮

∇δA · d` = mBπ (21)

Stoke’s law then yields quantization of magnetic flux:

{
B · n̂ dS =

∮
A · d` = mBπ

~
e

= mB
h

e
. (22)

Allowing mB to be half-integer, this is the same value as found in superconductors. For superconductors, the phase
comes from the electron pair wave function with mB = 1 rather than from the macroscopic wave function attributable
to all the other particles, and the charge is doubled. (((needs reference)))

This classical quantization of magnetic flux is consistent with de Broglie’s observation in a 1963 interview that ”...
in quantum phenomena one obtains quantum numbers, which are rarely found in mechanics but occur very frequently
in wave phenomena and in all problems dealing with wave motion.” [26]

2.3. Electron Interactions

Alternatively, suppose A and B are electrons with phase factor exp (i(mBφB − ωBt)) for ψB and similarly for ψA.
The angular frequency of the bispinor wave function is related to mass by ~ωB = mec

2. The angular frequency of the
vector wave function would be twice this (and angular momentum would be ~/2).

For simplicity, we define rB = |r − rB | to be the distance from the center of particle B at rB . The distance rA is
similarly defined for particle A. The distance between the centers of the two particles is rAB .

The phase shift of ψA is:

δA =
|ψB |2

|ψA|2 + |ψB |2
[(mBφB − ωBt))− (mAφA − ωAt))] (23)

2.3.1. Magnetic Flux

The computed magnetic flux around B will vary with distance from the particle center. We are interested in the
phase shift of A attributable to particle B, near the center of A. Near rA = 0 we have |ψA|2 >> |ψB |2. Hence we can
approximate the phase shift as:

δA ≈

([
|ψB |2

|ψA|2

]
r≈rA

)
(mBφB − ωBt) (24)

Assume that each charge density has a peak value ρM and asymptotic radial decay of ρMα/(κr).

δA ≈
(

α

κrB

)
(mBφB − ωBt) (25)

This is the phase shift in the vicinity of rB ≈ rAB where |ψA|2 >> |ψB |2. The magnetic vector potential is:

e

~
A =

(
α

κrB

)(
mB

rB sin (θB)

)
φ̂B −

α

κr2B
(mBφB − ωBt)r̂ (26)

If we had kept the contribution of particle A in the phase shift, there would also be a term proportional to φ̂A, which
would average to nearly zero when integrating near rA = 0.

Magnetic flux is due to the azimuthal component of the vector potential, so we ignore the radial term:

e

~
A =

(
α

κrB

)(
mB

rB sin (θB)

)
φ̂B (27)
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Given the expression for A, the effective magnetic field at finite distance rB from the center of B is:

B =
~αmB

eκr3B sin (θB)
θ̂B (28)

This is not a simple dipole field.
For mB = 1/2, the magnetic flux through the plane sin (θB) = 1 inside radius rB is:∮

(A · d`) = − ~α
eκrB

π (29)

Taking α = e2/(4πε0~c) to the be fine structure constant and κ = mec/~, the radial variation of this flux is the same
as for an electron. Of course, the radial dependence was chosen to give this result. Next, we will show that this flux
is consistent with the charge of the electron.

2.3.2. Electric Field

To calculate an electric force, we note that the phase velocity for the phase shift δA is:

v =
ωB
mB

r sin θBφ̂B (30)

For simplicity, we neglect any motion of particle B. Changes of phase are attributable to wave propagation. Using
∂tδA = −v · ∇δA yields:

eEi = ~((∂ivj)∂j + vj(∂i∂j − ∂j∂i))δA (31)

The second term cannot contribute to the field because the phase velocity is zero at the point where the derivatives
do not commute. The radial component is thus (with φ = φB defined relative to the center of ψB):

eEr = ~(∂rvφ)Aφ (32)

Direct substitution yields:

eEr =
~ωB α
κr2B

(33)

Substituting κ = ωB/c yields:

E =
~c α
er2B

r̂B =
e

4πε0r2B
r̂B (34)

This is the usual electric field of a point charge located at rB = 0. Note that this result is independent of the azimuthal
quantum number and the frequency (or mass).

Recall that we neglected any contribution from the phase of particle A. Since the electric field is radial, any
contribution from the phase shift proportional to φA would not affect the bulk motion of particle A.

A similar relationship between electric charge and magnetic flux was obtained by Jehle, who assumed a spatially
diffuse magnetic flux quantum rotating with angular frequency ω = 2mec

2/~. [22, 23] In that work, the sign of the
charge depends on the relative orientation of the magnetic flux and the direction of rotation. In the work presented
here, this corresponds to the relative sign of the spatial and temporal phases: (mBφ± ωt).

2.4. Maxwell’s Equations

The electromagnetic fields defined above are also subject to Maxwell’s equations. The definitions of E and B imply
Faraday’s Law and Gauss’ magnetic law:

∇×E = −∂tB , (35a)

∇ ·B = 0. (35b)
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Gauss’ electric law and Ampere’s law define the charge and current densities (ρe and J, respectively):

∇ ·E = −(∇ · ∂tA +∇2Φ) ≡ ρe
ε0
, (36a)

∇×B− 1

c2
∂tE = ∇× (∇×A) +

1

c2
(∂2tA + ∂t∇Φ)

≡ µ0J . (36b)

The last equality is equivalent to the usual expression:

1

c2
∂2tA−∇2A =

4π

c
J (37)

subject to the Lorentz condition:

1

c
∂tΦ +∇ ·A = 0 (38)

As derived above, the electric field of a spherical harmonic wave corresponds to that of a point charge. These
definitions of charge and current densities are consistent with the continuity equation:

∂tρe +∇ · J = 0 . (39)

There is a discrepancy between the point-like source charge density of Maxwell’s equations, and the object charge
density of wave mechanics that we assumed earlier. In wave mechanics, the object charge density is ”smeared out”
throughout the wave function. It is similarly smeared out in quantum mechanics, in which case the smearing is
attributed to uncertainty of position.

Hence particle-like waves in an elastic solid can behave like fermions, with electromagnetic potentials derived from
phase shifts that result from wave interference.

2.5. Quantum Electrodynamics

It is customary in quantum mechanics textbooks to define ψ̄ ≡ ψ†γ0, replace ψ† with ψ̄γ0, and define the ”4-vector”
of matrices γµ ≡ (γ0, γ0γ5σ). The 4-potential is Aµ = (Φ,−A) and the 4-current (ρ,J) is Jµ = qψ̄γµψ. These changes
of variables are intended to make the theory look more ”relativistic”. It is also common to use ”natural” units with
µ0 = ε0 = c = 1. Using this notation with ∂µ = (∂t,∇), the Lagrangian density for two interacting electrons is:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + ψ̄B [γµ(i∂µ − qAµ)−mB ]ψB . (40)

Separating the interaction of particle B yields:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + ψ̄B [γµ(i∂µ)−mB ]ψB − JµAµ . (41)

Since the Dirac equation is satisfied for each particle, this is equivalent to:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + JµAµ − JµAµ . (42)

Relationships between potentials and sources are given in Eqs. 36. Assuming time-independence with zero diver-
gence of the vector potential and zero curl of the electric field, the sources become:

ρe
ε0

= −∇2Φ , (43a)

µ0J = ∇× (∇×A) . (43b)

Therefore:

JµAµ = −Φ∇2Φ−A · (∇×∇×A) . (44)

According to Green’s first identity:

−
∫
V

Φ∇2ΦdV =

∫
(∇Φ)2dV −

∫
∂V

Φn · ∇ΦdS . (45)
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Similarly:

−
∫
V

A · (∇×∇×A)dV = −
∫
V

(∇×A)2dV +

∫
∂V

A× (∇×A)dS . (46)

Using the definitions of E and B while neglecting boundary integrals yields:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA + (E2 −B2)− JµAµ (47)

This differs from the (non-quantized) Lagrangian density of quantum electrodynamics (QED) by a factor of 1/2 in
front of (E2−B2). This difference is resolved by the fact that when varying the potentials Aµ, the source densities Jµ

should be regarded as functions of Aµ. However, it is conventional to vary the potentials independently of the source
densities, yielding only half of the correct value. When computing variations of E2 and B2, both factors in E2 (and
B2) are varied. To eliminate this double-counting and be consistent with independent variation of the potentials, a
factor of 1/2 must be introduced:

L = ψ̄A[γµ(i∂µ − qAµ)−mA]ψA +
1

2
(E2 −B2)− JµAµ (48)

This is the Lagrangian density of non-quantized QED, in which a single charged fermion interacts with an electro-
magnetic field. Generalization to multiple interacting particles requires a quantization procedure with raising and
lowering operators to allow for changes in the numbers of particles.

3. DISCUSSION

We have outlined a similarity between a classical model of interacting waves in an elastic solid to quantum elec-
trodynamics (QED). This interpretation of QED, and by extension the Standard Model, is that it represents a
decomposition of the classical spin density field into interacting elementary particles. Others have also associated
quantum mechanical behavior with waves in an elastic solid. [10, 27–30]

4. CONCLUSIONS

This paper describes interactions of classical waves of spin density. Wave interference of spin eigenfunctions gives
rise to the Pauli exclusion principle and electromagnetic potentials, with suggested interpretations of magnetic flux
quantization and the Coulomb potential. The Lagrangian density of single-fermion quantum electrodynamics is also
given a classical physics interpretation. Hence classical wave theory offers insight into the physical basis for relativistic
quantum mechanics.

[1] R. A. Close, in Ether Space-time and Cosmology, Vol. 3, edited by M. C. Duffy and J. Levy (Apeiron, Montreal, 2009) pp.
49–73.

[2] R. A. Close, Adv. Appl. Clifford Al. 21, 273 (2011).
[3] R. A. Close, Elect. J. Theor. Phys. 12, 43 (2015).
[4] S. Matsutani, J. Phys. Soc. Jpn. 61, 3825 (1992).
[5] S. Matsutani and H. Tsuru, Phys. Rev. A 46, 11441147 (1992).
[6] S. Matsutani, Phys. Lett. A 189, 27 (1994).
[7] R. A. Close, Found. Phys. Lett. 15, 71 (2002).
[8] A. G. Kyriakos, Apeiron 11, 330 (2004).
[9] M. Arminjon, FPL 19, 225 (2006).

[10] P. A. Deymier, K. Runge, N. Swinteck, and K. Muralidharan, J. Appl. Phys. 115, 163510 (2014).
[11] M. Yousefian and M. Farhoudi, “QED treatment of linear elastic waves in asymmetric environments,” arXiv:1912.03272v4

[physics.class-ph] (24 May 2020).
[12] Y. Couder and E. Fort, Phys. Rev. Lett. 97, 41541010 (2006).
[13] D. M. Harris, J. Moukhtar, E. Fort, Y. Couder, and J. W. M. Bush, Phys. Rev. E 88, 011001 (2013).
[14] A. Eddi, E. Fort, F. Moisy, and Y. Couder, Phys. Rev. Lett. 102, 240401 (2009).
[15] E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, and Y. Couder, Proc. Natl Acad. Sci. 107, 1751517520 (2010).
[16] A. Eddi, J. Moukhtar, S. Perrard, E. Fort, and Y. Couder, Phys. Rev. Lett. 108, 264503 (2012).



9

[17] R. Brady and R. Anderson, “Why bouncing droplets are a pretty good model of quantum mechanics,” arXiv:1401.4356
[quant-ph] (16 Jan 2014).

[18] J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269 (2015).
[19] E. Madelung, Z. Phys. 40, 322 (1927).
[20] L. de Broglie, in Electronset photons: rapports et discussions du cinqui‘eme conseil dephysique (Gautier-Villars, Paris,

1928).
[21] D. A. Bohm, Phys. Rev. 85, 166, 180 (1952).
[22] H. Jehle, Phys. Rev. D 3, 306 (1971).
[23] H. Jehle, Phys. Rev. D 6, 441 (1972).
[24] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (World Scientific, Singapore,

2008) p. 119.
[25] J. L. Synge, Geometrical Mechanics and De Broglie Waves (Cambridge University Press, Cambridge, 1954) p. 113.
[26] J. J. O’Connor and E. F. Robertson, “Louis victor pierre raymond duc de broglie,” https://mathshistory.st-

andrews.ac.uk/Biographies/Broglie/ (May 2001).
[27] M. Danielewski, Z. Naturforsch 62, 564 (2007).
[28] M. Danielewski and L. Sapa, Bulletin of Cherkasy University 1, 22 (2017).
[29] I. Schmeltzer, Found. Phys. 39, 73 (2009).
[30] I. Schmeltzer, in Horizons in World Physics, Vol. 278, edited by A. Reimer (Nova Science Publishers, 2012).


